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Abstract
This paper describes the AntVoice systems, developed by the
Ant Financial Service Group, for the tracks of far-field speaker
verification from single microphone array in FFSVC 2020.
We explore the cross-channel relationship modeling technique
and a combination of additive cosine margin softmax loss and
equidistant triplet-based loss for metric learning. On both tracks
of speaker verifications, our system performances fully surpass
the baselines, even just with the single model. Our submis-
sions were a fusion of several state-of-the-art encoding neural
network models, that leads to consistent performance improve-
ment.
Index Terms: far-field speaker identification, neural speaker
embedding, Squeeze-and-Excitation network, additive cosine
margin softmax, equidistant triplet-based loss

1. Introduction
In this paper, we describe the speaker verification systems,
AntVoice, developed by the Ant Financial Service Group for
the 2020 Far-Field Speaker Verification Competition (FFSVC
2020) [1]. The competition aims to address challenges re-
lated to far-field speaker verification. It is separate into tasks
for 1) far-field text-dependent speaker verification from single
microphone array, 2) far-field text-independent speaker veri-
fication from single microphone array, and 3) far-field text-
dependent speaker verification from distributed microphone ar-
rays. To simulate real usage scenarios, various background
noise is played during recording, and enrollment utterances are
collected in close-talking microphones while testing utterances
in far-field microphone arrays. As a consequence, participants
need to develop systems that are robust to background noise,
room reverberations, mismatch between recording channels, et
al. Our team has participated in tasks 1 and 2, which both in-
volve speaker verification from single microphone array.

The field of speaker verification has advanced significantly
due to the development of speaker embeddings using deep neu-
ral network [2, 3]. This paradigm has been very effective,
achieving state-of-the-art results on speaker verification bench-
mark datasets. It generally consists of a pooling layer on top
of encoded frame-level feature representations, to obtain the
segment-level information of speech segments. Various tempo-
ral pooling techniques have been investigated [2, 4, 5, 6]. Once
the segment-level information is obtained, it is mapped via feed
forward network classifier to corresponding speaker ids. Al-
though the effectiveness of this paradigm was demonstrated for
speaker verification in close-talking microphones [7], we found
in this paper that more techniques need to be developed for far-
field speaker verification.

In this paper, we report our approach as follows. Section 2
describes the front-end and data augmentation that increases di-
versity of the training data. In Section 3, we describe the neural
speaker embeddings we used in this competition. Results are

reported in Section 4. Finally, in Section 5 we conclude the
paper.

2. The Front-end and Data Augmentation
Input Feature. Audios are resampled to 16,000 Hz. 80-
dimensional logarithm mel filter banks are generated within a
25ms sliding window with a hop size of 10ms, cepstral mean
normalization(CMN) is first performed within a 3 second slid-
ing window and then cepstral mean and variance normaliza-
tion(CMVN) applied whinin the whole utterance. Energy based
voice activity detector(VAD) is employed to remove silence
frames; specially, we use adaptive threshold per utterance, that
is, 1.0325 times the average energy of the head-and-tail respec-
tive 30 frames. Other acoustic feature configurations are the
same as the default in Kaldi [8].

During training, chunks of 1 ∼ 4.5 second long audio seg-
ments are randomly sampled from recordings; specially, in a
mini-batch, the frame length L is uniformly distributed within
a certain interval range , e.g., [100, 256] in the first task(for
shorter utterances) and [200, 450] in the second task. Then
a chunk of segments give a batch of acoustic features of size
B × L× 80, where B is the mini-batch size.
Speech Enhancement. To enhance speech quality, the algo-
rithm of weighted prediction error(WPE)[9, 10] is used to re-
duce signal dereverberation for enrollment and testing record-
ings.
Data Augmentation. To reduce mismatching between close-
talking and far-field speech and strengthen model robustness,
we augment the training recordings from the microphone and
the cellphone. To be specific, we use Pyroomacoustics [11],
based on the algorithm of image source model(ISM), to sim-
ulate the room impulse response(RIR) generator, and one ut-
terance from the microphone and the cellphone respectively
generates 5 replicas from diverse microphone arrays which are
placed at -1.5m, 1m, 3m, 5m, left or right 3m far from sound
source. Additionally, with the method in Kaldi1 [8], reverbera-
tion, noise, music and babble are mixed into the training sam-
ples at random signal-to-noise ratio(SNR) between 0 to 20 dB,
resulting in about 750,000 augmented recordings.

As in [1, 12], we use the background noise of the testing
utterance to perform enrollment augmentation. Specifically, we
adopt the above VAD method to detect the non-speech parts of
the testing utterance for each trial; then in line with the SNR of
the testing recording, these non-speech parts are mixed with the
original enrollment utterance to get a simulated one.

3. Neural Speaker Embeddings
3.1. Encoder Networks

Since [2, 3], methods to represent speaker characteristics are
dominated by deep neural networks. These approaches use

1github.com/kaldi-asr/kaldi/blob/master/egs/sre16/v2.



encoder networks to extract frame-level representations from
acoustic features; that is followed by a pooling layer to ag-
gregate into segment-level speech characteristics; and finally,
one fully connected classification network projects the extracted
segment-level representations to corresponding speaker ids. We
term the segment-level speaker characteristics as neural speaker
embeddings or x-vectors. It is important to have enough dis-
criminative information in the embeddings to distinguish differ-
ent speakers.
E-TDNN and F-TDNN. We use E-TDNN and F-TDNN as in
[13], but with the following differences: Exponential Linear
Unit(ELU) defined as f(x) = max(0, x) + min(0, ex − 1),
rather than ReLU, is used as the nonlinear activation; for the
outputs of each parameter layer, batch normalisation is applied
before the nonlinearity; the nonlinear activations of size 512 at
the penultimate layer are used as embedding features for verifi-
cation tasks as in [7]. These distinctions are also applicable to
ResNet and SE-ResNet below.
ResNet. We use standard 34-layer convolutional residual net-
work (ResNet) architecture [14] in our experiments, as is de-
scribed in Table 1. In Table 1, [(3× 3, 64)2]× 3 means 3
residual blocks, one of them consisting of 2 convolutional lay-
ers with kernel size of 3× 3 and 64 filters, others in analogy; for
the first block of Res2 ∼ 4 with different numbers of channels
between the input and output, a short cut connection between
them is needed, using one convolutional layer with kernel size
of 1× 1.

Layer Configuration
Conv1 (3× 3, 64), stride (1× 2)
Res1 [(3× 3, 64)2]× 3
Res2 [(3× 3, 128)2]× 4
Res3 [(3× 3, 256)2]× 6
Res4 [(3× 3, 512)2]× 3

Conv2 (3× 3, 512), stride (1× 2)
Pooling statistical pooling(mean + std dev)
Linear1 2048 × 512
Linear2 512 × 512(embedding features)

Classifier 512 × #Spks
Table 1: The convolutional ResNet-34 architecture.

SE-ResNet. For modeling channel relationship, we use
“Squeeze-and-Excitation” residual network(SE-ResNet) [15]
in our experiments. In SE-ResNet, the SE block adaptively
recalibrates per channel feature responses by explicitly mod-
elling interdependencies between channels, which corresponds
to channel-wise attention mechanism. While the convolutional
residual part of SE-ResNet is as in Table 1, the SE block is
depicted in Table 2 where Nc is the number of channels.

Layer Configuration
Linear1 Nc ×max(Nc/16, 32)

Nonlinear1 ELU
Linear2 max(Nc/16, 32) × Nc

Nonlinear2 Sigmoid
Table 2: The “Squeeze-and-Excitation” block of SE-ResNet.

3.2. Objective Loss Function

In our experiments, the objective loss function is the addition
of additive cosine margin softmax loss and equidistant triplet-
based loss, as are described below.
Additive Cosine Margin Softmax Loss. Additive cosine
margin softmax loss, aka CosAMS, was proposed in [16].

With embedding feature xj as the jth observation of a mini-
batch and the constraint of zero biases in the classifier layer,

cos(θ<xj ,wc>) =
wT

c xj
||wc||·||xj ||

, where wc is the weight vector
corresponding to class c, θ<xj ,wc> is the angle between xj and
wc. The CosAMS loss function is as follows,

LCosAMS = − 1

B

B∑
j=1

log
e
η(cos(θ<xj,wyj

>)−m)

Zxj
,

Zxj = e
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>)−m)
+

∑
i6=yj

e
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)
,

(1)
where yj is the label corresponding to xj , η is the scale hy-
perparameter, and m is the margin that forces xj to be more
discriminiative.

To avoid local optimum or divergence when training models
with the discriminative loss function such as LCosAMS , we use
an annealing strategy on m to make training process stable [7].
Empirically, we increase the margin m linearly from 0 to the
target margin value as m = min(mmax,minc × ẽ), where
ẽ ∈ [0, 1, 2, ...] is the training epoch index. In our experiments,
we set η = 30, minc = 0.07, mmax = 0.2.
Equidistant Triplet-based Loss. Equidistant triplet-based
loss, or EDTri for short, was proposed in [17]. While tradi-
tional triplet loss aims to force the distance between the matched
positive sample and the anchor less than that between the mis-
matched negative one and the anchor by at least a given margin
α, EDTri loss further introduces equidistant constraint terms
that pull the matched samples closer by adaptively constraining
two samples of the same class to be equally distant from another
one of a different class in each triplet. By optimizing EDTri
loss, the algorithm progressively maximizes intra-class similar-
ity and inter-class variances, contributing to more discrimina-
tive embeddings.

To be specific, for a certain anchor xa, we choose the clos-
est mismatched sample xn and the farthest matched sample xp
in the embedding feature space to form a triplet {xa, xp, xn},
where the labels satisfy yp = ya and yn 6= ya. The EDTri loss
function is as

LEDTri = LTri + LEquiD,

LTri =
1

B

B∑
j=1

[d(xa, xp)− d(xa, xn) + α]+,

LEquiD =
1

B

B∑
j=1

([d(xa, xp)− d(xp, xn) + α]++

|d(xp, xn)− d(xa, xn)|),

(2)

where d is the l2-norm distance, [·]+ = max(·, 0). In our exper-
iments, let α = 0.3.

3.3. Model Training

Inspired by the transfer learning strategy in [12], we use the cor-
pora in OpenSLR 2(including SLR18, SLR33, SLR38, SLR47,
SLR49, SLR62 and SLR68, in total of 9127 speakers) to pre-
train the speaker embedding models as described in Sec. 3.1.
Then the models are finetuned with domain-dependent dataset
as in [1]: in the first task, use the HI-MIA dataset(SLR85,
[18]) and the first 30 utterances of FFSVC 2020 training dataset;
in the second task, use the remaining FFSVC 2020 training

2http://openslr.org.



Description Task#1 Task#2
minDCF EER(%) minDCF EER(%)

Development dataset
baseline[1] 0.57 6.01 0.58 5.83
E-TDNN 0.456 4.32 0.685 6.76
F-TDNN 0.495 4.45 0.704 6.91
ResNet 0.427 3.58 0.557 4.9

SE-ResNet 0.394 3.12 0.569 5
SE-ResNet + PLDA 0.464 4.286 - -

fusion 0.329 2.61 0.499 4.23
Evaluation dataset(30% trials)

baseline[1] 0.62 6.37 0.66 6.55
submission 0.4557 4.25 0.5482 4.72

Table 3: Performance results for speaker verification, with the cosine similarity as back-end scoring in general, unless otherwise
specified.

dataset; both plus the corresponding augmented audios as de-
scribed in Sec.2.

Models are trained using the RADAM optimizer [19], the
weight decay is 5 × 10−4. The learning rate is scheduled with
the cyclical strategy [20], which brings in two benefits: to allow
more rapid traversal of saddle point plateaus and to hit the op-
timum learning rate. The hyper-parameters of cyclical learning
rate(CLR) are listed in Table 4. At the beginning of each epoch,
training samples are randomly shuffled.

hyper-parameter pretraining finetuning
max lr 10−3 2.5× 10−5

base lr 2.5× 10−4 6.25× 10−6

up step size 2 epochs half an epoch
Table 4: The hyper-parameters of CLR.

4. Evaluations and Results
4.1. Scoring

Utterances with the whole length are used for evaluation. The
cosine similarity and probabilistic linear discriminant analy-
sis(PLDA) [21] serve as back-end scoring, but for the latter,
we could not achieve performance improvement. For each trial,
two utterances, inclusive of the original and simulated ones (as
described in Sec.2), are used for enrollment, their embeddings
are first whitening, then normalized to the length and finally av-
eraged into the speaker embedding; the same method is also ap-
propriate for the testing audios from 4 channels of the far-field
microphone arrays.

4.2. Fusion

As the fusion strategy, the scores from the models of E-TDNN,
F-TDNN, ResNet, SE-ResNet are linearly weighted into one
regression value, where the weighting coefficients, as listed in
Table 5, are tuned on the development dataset.

Task E-TDNN F-TDNN ResNet SE-ResNet
#1 0.13 0.15 0.26 0.46
#2 0 0.15 0.57 0.28
Table 5: The weighting coefficients for score fusion.

4.3. Performance Results

The performance results for speaker verification on the devel-
opment and evaluation dataset are reported in Table 3. As the
baseline system [1], we adopt minimum detection cost func-
tion(minDCF, with Ptarget = 0.01) as primary metric, and equal
error rate (EER) as auxiliary one; their smaller values corre-
spond to better performances.We observe that, in both tasks, our
methods perform much better than the baselines, even just with
the single model(ResNet or SE-ResNet). From Table 3 and 5,
we could see that the SE-ResNet model contributes much more
to the performance improvement in the first text-dependent ver-
ification task, which may be attributed to the cross-channel
correlation modeling capability that is effective for short utter-
ances; but the same tendency could not be observed yet in the
second text-independent task.

4.4. Model’s Efficiency

In the Table 6 are the parameter size and the average inference
run time on NVIDIA Tesla P100 GPU of the above encoder net-
works, with a single thread and 64-processor 2.5-GHz Intel(R)
Xeon(R) CPUs. For these configs, the inference run time on
CPU is usually 4 ∼ 5 times slower than that on GPU. Notice
that the acoustic feature processing is on CPU, and the process-
ing time for enrollment data accounts for a third.

Model #Parameter(M) run time per trial(ms)
Task#1 Task#2

E-TDNN 6 29.64 40.38
F-TDNN 13 33.6 42.34
ResNet 25 57.6 57.33

SE-ResNet 25 93.48 86.8
Table 6: The parameter size and the average inference run time
on GPU.

5. Conclusions
This paper describes our AntVoice system in far-field speaker
verification for FFSVC 2020. We use SE-ResNet for cross-
channel relationship modeling that brings in consistent per-
formance improvement in the text-dependent verification task.
Moreover, a combination of additive cosine margin softmax
loss and equidistant triplet-based loss is explored for enlarging



intra-class similarity and inter-class variances which contributs
to more discriminative embeddings. Based on these innovative
methods, our system performances fully surpass the baselines,
even just with the single model. The far-field speaker recogn-
tion task under complex acoustic conditions is challenging and
deserves more further research.
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