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Abstract
In this paper, we present the system developed by the Group of
Research & Education in AI & Telecom (GREAT) team for the
Far-Field Speaker Verification Challenge (FFSVC) 2020. We
explore almost every part of the system pipeline, and our best
single system contains elements of a combined training dataset,
a deep neural network with specially designed layers and loss
functions, score normalization component and so on. Moreover,
we investigate some domain adaptation methods. The submit-
ted system is based on the fusion of several deep learning sub-
systems. As the result, the fusion system achieves on the devel-
opment set EER, minDCF of 5.21% and 0.555, and on the eval-
uation set EER, minDCF of 6.61% and 0.693, respectively in
the task of far-field text-independent speaker verification from
single microphone array (Task2). And the system also performs
well in the other two tasks without any fine-tuning operations.
Index Terms: speaker verification, FFSVC 2020, domain adap-
tation

1. Introduction
Automatic speaker verification (ASV) is a technology to give a
decision of whether two utterances said by one person. ASV
can roughly split to two sub-tasks, text-dependent and text-
independent, and the latter is more challenging cause it does not
have any lexicon or pronunciation constraints. In past decades,
researches on ASV have made great progress. Thanks to the
rapid growth of deep learning methods, deep neural network
(DNN) based systems attract more attention than i-vector[1]
based statistical systems recently. Network building is critical
for all deep learning based tasks, ResNet[2], x-vector[3] and
E-TDNN[4] are widely used in ASV tasks for learning repre-
sentation and training classifiers. Besides, many improvements
have been made during the whole pipeline of ASV, example
for pooling operation[5, 6], loss function[7, 8, 9] and back-end
modeling[10, 11].

In real-world scenarios, ASV system often meets speaker
utterances from complex recording environments, which leads
challenging in applications such as access control. For example,
situations of channel, device and its distance, background noise
may affect the performance of ASV system. VOiCES from a
Distance Challenge[12] consists of automatic speech recogni-
tion (ASR) and ASV tasks, which focus on single-channel far-
field audio under various noisy conditions. Go a step further,
the FFSVC 2020 [13] is designed to explore three ASV tasks
under far-field distributed microphone arrays under noisy condi-
tions. The tasks are Far-Field Text-Dependent Speaker Verifica-
tion from single microphone array, Far-Field Text-Independent
Speaker Verification from single microphone array and Far-
Field Text-Dependent Speaker Verification from distributed mi-
crophone arrays.

Since the given training set has few speakers, more train-

ing data should be involved, which brings the domain gap to
our work. Many works consider some semi-supervised or un-
supervised domain adaption methods: gradient reversal layer
(GRL)[14] or adversarial multi-task training[15]. But these tar-
get set does not have speaker labels, which is not similar to our
work. To fully use the given data, we consider a more efficient
domain adaption method with supervised learning.

To solve the FFSVC ASV tasks elegantly, we design the
system pipeline that is suitable for all the three tasks. To sum up,
the main contributions we make for FFSVC are the following:

1. To expand the size and diversity of training data, we
combine datasets including FFSVC, Vox-celeb1&2 [16,
17] and CN-celeb[18], totally 8443 speakers for training
the model.

2. We choose an E-TDNN framework with residual links
and RNN layers, and use attention mechanism to make
the network focus on speaker-dependent information.

3. To minimize the inference of the difference between
training sets, we design a speaker-independent branch1

to learn domain labels, which makes the speaker embed-
dings more speaker-dependent.

4. By score normalization and system fusion, we im-
prove the performance from the original cosine simi-
larity scores. Compared with the official baseline, we
achieve better results with less training data.

The remainder of this paper is organized as follows. Sec-
tion 2 shows our end-to-end speaker embedding system, includ-
ing deep learning network, loss function and domain adaptation
techniques. In Section 3, we introduce the setup of data usage,
data augmentation and training details. Then the experimental
development and evaluation results are reported and analysed in
Section 4. Lastly, we give a conclusion and make a summary in
Section 5.

2. System Descriptions
2.1. Network structure

In our work, we choose an Extended Time-Delay Neural Net-
work (E-TDNN) as the framework to classify speakers. Com-
pare with the classic x-vector framework, the E-TDNN is much
deeper and comprises more context in the frame level. As table
1 shows, acoustic features are feed to the network, then high-
representation of frames are extracted by several TDNN layers.
At the same time, we put some residual links[19] among the
frame-level layers to keep some low-rank information. Our pre-
vious work has shown that LSTM[20] layer can lead success in
language recognition task[21], so an RNN layer is connected
with the TDNN part. Then we make a pooling operation so

1This part is finished after the mid-term deadline (May 1st), so we
only report the development results of these experiments



that we can get the utterance level features from frame level.
Batch normalization and ReLU non-linearity are deployed after
each layer. And finally, we project the utterance level features
to a classifier by two fully connected layers. The output of the
E-TDNN is the posterior probabilities of the training speakers.
In the evaluation phase, the speaker embeddings are extracted
from the layer 14.

Table 1: E-TDNN Framework with RNN layers

ID Layer Type Input-node Output-dim Res Links

1 TDNN t-2:t+2 512
2 Dense t 512
3 TDNN t-2,t,t+2 512
4 Dense t 522
5 TDNN t-3,t,t+3 512 3
6 Dense t 512
7 TDNN t-4,t,t+4 512 2,4
8 Dense t 512
9 Dense t 512 4,6,8

10 RNN t 512
11 Dense t 1500
12 Polling T 3000
13 Dense T 512
14 Dense T 512
15 Dense T Num.Spks.

2.2. Angular based speaker embedding leaning

Softmax cross entropy is the most widely used loss function for
classification tasks. And much improvements has been made in
face recognition task. Modified softmax uses ‖xi‖ as weights
and can it be written as:

Lmodified = − 1

N

∑
i=1

log
e‖xi‖cos(θyi,i)∑
j=1 e

‖xi‖cos(θj,i)
(1)

Based on this equation, different margins are introduced. And
we choose additive margin softmax (AM-softmax)[22] as loss
function to optimize the speaker classifier:

La =

− 1

N

∑
i=1

log
e‖xi‖(cos(θyi,i)−m)

e‖xi‖(cos(θyi,i)−m) +
∑
j 6=yi e

‖xi‖cos(θj,i)

(2)

In real implementation of speaker verification tasks, annealing
technique is used in the training process:

fyi =
λ‖xi‖cos(θyi,i) + ‖xi‖cos(mθyi,i)

1 + λ
(3)

where fyi is the yith output logit given embedding xi, and λ
is gradually reduced during training processing. And we use a
more straight forward alternative in all the experiments:

Lspeaker = (1− λ
′
)Lmodified + λ

′
La, (4)

where we gradually increase λ
′

in first several epochs to gradu-
ally shift the loss from modified softmax to AM-softmax loss.

2.3. Attention mechanism

Traditionally, we make the time dimension pooling operation by
computing the mean and standard deviation. To let the network
focus on the speaker-specific features and ignore the influence
of other elements, example for depth, channels or domains. We
apply attention methods[6] instead of the original statistic pool-
ing layer. The weight of each frame is defined as:

et =W 2ReLU(W 1ht) (5)

αt =
exp(et)∑T
τ exp(eτ )

(6)

where W 1 and W 2 are two matrices, ht is the frame level
feature. After a softmax function, we can calculate the weight
of each frame. Subsequently, we define the weighted mean ũ
and the weighted standard deviation σ̃ as follows[23]:

ũ =

T∑
t

αtht (7)

σ̃ =

√√√√ T∑
t

αtht · ht − ũ · ũ (8)

After getting these attention statistics, concatenation of mean
and standard deviation is feed to the next part as utterance level
representations.

2.4. Domain adaptation methods

We explore two types of domain adaptation methods to transfer
the system to perform better in the target domain.

2.4.1. One-class classification (OCC)

To reduce domain divergence, we can force the input from dif-
ferent dataset into a new nominal domain, which is called a one-
class classification problem[24]. A fully connected (FC) layer
and a sigmoid activate function are employed sequentially to the
layer 13 in Table1. And the OCC loss can be written as:

LOCC = − 1

N

∑
i=1

log(p0(xi)) (9)

where p0(xi) is the probability that whether the feature xi be-
longs to the new nominal domain.

2.4.2. Speaker-independent branch (SIDB)

After attention mechanism, we assume that the attention map
builds a projection to the speaker specific space. So the rest part
may contain other information such as domain[25], we call this
part as Speaker-independent branch. And the speaker embed-
ding and the speaker-independent feature can be represented as:

F emx = Ax ⊗ Fx, F spx = (1−Ax)⊗ Fx (10)

whereAx is the attention map,⊗ is the calculating operation of
mean and standard deviation, and Fx is the frame-level features.
The F spx will then link to a domain classifier by a FC layer with
cross entropy loss:

LDSB = − 1

N

∑
i=1

log(p(F spxi )) (11)



To ensure that the two features are totally mutual exclusive and
independent, we add a soft orthogonal constraint loss written as
follow:

Lorth = − 1

N

∑
i=1

F emxi · F
sp
xi

‖F emxi ‖22‖F
sp
xi ‖22

(12)

As F spx learns speaker-independent elements (domain label in
this paper) better, the network can eliminate less useless infor-
mation from F emx . So the F emx will only contains speaker-
dependent features. Because all the training samples has
speaker labels, we can jointly optimize the loss function as fol-
lows:

Ltotal = Lspeaker + γLDA (13)

where LDA is domain transfer loss representing LOCC or
LDSB + Lorth and γ is a hyper-parameter.

2.5. Score normalization

We utilize Adaptive Symmetric Score Normalization (AS-
Norm)[26, 27] to FFSVC results from all trials after cosine sim-
ilarity scoring as a domain adaptation method. Through com-
parative experiments, we conclude that adaptive S-norm2 per-
forms best in the indicatorDCFmin and we choose the FFSVC
development set as the adaptive cohort. We select X closest
files (most positive scores) to the enrollment/test utterance as
Etope or Etopt , and the cohort scores based on such selections are
defined as:

Se(Etopt ) = {s(e, ε)|∀ε ∈ Etopt }
St(Etope ) = {s(t, ε)|∀ε ∈ Etope }

(14)

Then the adaptive S-norm2 (AS-Norm2) is:

s̃(e, t) =
1

2

(
s(e, t)− µ[Se(Etopt )]

σ[Se(Etopt )]
+
s(e, t)− µ[St(Etope )]

σ[St(Etope )]

)
(15)

3. Experimental setup
3.1. Dataset preparing

We set up three data sets for training. FFSVC20 challenge train-
ing database includes 120 speakers and each speaker has 3 vis-
its. The recordings from five recording devices for each utter-
ance are provided for training, including one close-talk micro-
phone, one 25cm distance cellphone, and three randomly se-
lected microphone arrays (4 channels per array). For this set,
although each speaker has a large number of utterances, the
number of speakers is a small amount. Therefore, we intro-
duce Vox-celeb1&2 set (SLR49), which covers 7323 speakers
and the language is English. Furthermore, we add CN-celeb
set (SLR82) with 1000 speakers to train them jointly. The lan-
guage of FFSVC and CN-celeb is Chinese Mandarin. We com-
bine FFSVC and Voxceleb as combineI set (7443 speakers),
and combine FFSVC, Voxceleb and CN-celeb as combineII set
(8443 speakers).

The given development set is split into two sub-sets. We
use the official development trials to report the development re-
sults. And we use the rest as score normalization corpus. For
each task, we randomly choose 400 utterances from score nor-
malization corpus and set the top number to 200 for subsequent
adaptive AS-norm2 operation.

3.2. Data augmentation

The data augmentation method we used is adding MUSAN[28]
dataset and room impulse responses (RIRs) to the raw training

data. And we randomly sampled 1500 augmentation utterances
(2s-4s) for each speaker. Energy-based voice activate detection
(VAD) is applied. After these operations, 30-dimensional Mel-
frequency cepstral coefficient (MFCC) is extracted as the input
acoustic feature with a frame-length of 25 ms, mean-normalized
over a sliding window of 3 seconds.

3.3. Implementation Details

Stochastic Gradient Descent (SGD) with weight decay=5e-4
and momentum=0.9 is used as the optimization method. We
use PyTorch platform to training the network, and other opera-
tions are implemented in Python. Each model is trained for 7
epochs with an initial learning rate of 0.01. The learning rate
is gradually decreased to 0.0001. In the back-end modelling,
we use the cosine similarity as a scoring method, which gives
the cosine similarity of the two utterance embeddings. For the
FFSVC, the primary measure metric is defined as minimun de-
tection cost function (minDCF), which has same form as NIST
SRE:

Cdet = Cmiss×Pmiss×Ptar+Cfa×Pfa×(1−Ptar) (16)

where the parameters Cmiss, Cfa and Ptar are setting as 1.0,
1.0 and 0.01. Through equal error rate (EER) and Cllr is pro-
vided as auxiliary metrics, we select the sub-model which per-
forms best in primary measure metric (minDCF).

4. Results and analysis
4.1. Comparative Experiment

To find the best backbone for the FFSVC task, we first conduct
a series of experiments with different network architectures. As
show in Table2. We can first observe that adding more layers to
the original 5-layer x-vector truly make sense, the deeper frame-
work has a stronger ability to extract frame-level features from
the input acoustic features, and AS-Norm2 improves minDCF
a lot as a special domain adaptation method. Although the
speaker verification task does not consider the content of each
utterance and the sequence will be pooling at the time dimen-
sion, adding an RNN layer can still improve the performance by
15% in EER and minDCF. Specially, we conducted a compar-
ative experiment on LSTM and BiLSTM, and the latter shows
a better performance in both FFSVC task and Vox task. Thus
we choose the best structure as our backbone to carry out sub-
sequent experiments.

Table 2: System performance on FFSVC task2 development set
and vox1 test set, training with combineI set

FFSVC Dev Vox1 Test
Model minC EER minC EER

x-vector(original) 0.885 9.48% 0.231 2.30%
x-vector(AS-Norm2) 0.809 9.41% 0.231 2.30%

ETDNN 0.741 8.05% 0.185 1.92%
LSTM-ETDNN 0.659 6.39% 0.142 1.61%

BiLSTM-ETDNN 0.625 6.20% 0.165 1.48%

4.2. System results on FFSVC development sets

Table3 illustrates the detailed results on different speaker veri-
fication tasks in FFSVC development sets. In general, systems



Table 3: System Performance on FFSVC Development set, Att means attention mechanism, OCC means one class classification loss,
DSB means domain specific branch and (II) means the system is trained by combine(II) set, AS-Norm2 is appiled to all the systems

System Task1 Task2 Task3 Vox1 Test
ID Model minDCF EER minDCF EER minDCF EER minDCF EER

1 x-vector 0.723 8.52% 0.809 9.41% 0.659 6.61% 0.321 2.30%
2 BiLSTM-ETDNN 0.651 6.29% 0.625 6.20% 0.570 4.99% 0.165 1.48%
3 BiLSTM-ETDNN+Att 0.633 6.01% 0.629 6.21% 0.546 4.68% 0.170 1.57%
4 BiLSTM-ETDNN (II) 0.648 6.00% 0.612 6.13% 0.559 4.77% 0.166 1.53%
5 BiLSTM-ETDNN+Att+OCC 0.666 6.33% 0.629 6.23% 0.548 4.62% 0.166 1.62%
6 BiLSTM-ETDNN+Att+SIDB 0.642 6.29% 0.661 6.03% 0.549 4.90% 0.134 1.46%
7 Submitted Fusion System (2∼4) 0.578 5.27% 0.555 5.21% 0.511 4.14% 0.136 1.34%
8 New Fusion System (2∼6) 0.569 5.07% 0.554 5.06% 0.489 3.97% 0.119 1.35%

Table 4: Results of Submitted Fusion System (2∼4) on FFSVC
Evaluation set (mid-term results)

Task1 Task2 Task3
minDCF EER minDCF EER minDCF EER

0.695 7.25% 0.693 6.61% 0.625 7.00%

perform better in the text-independent task (FFSVC Task2) than
text-dependent task (FFSVC Task1) with a single microphone
array. It may because we directly transfer the text-independent
trained system to the text-dependent task without any text con-
straint fine-tuning. Since task3 has more test utterances than
task1 and task2, so all systems perform best in this task. It is
interesting that by comparing system 2 and system 3, we can
observe that replacing the statistic pooling by attention pool-
ing improves the results in text-dependent tasks. We analyze
the reason may be that the attention mechanism focuses more
on speaker-specific features and it is less constrained by utter-
ance content. System 4 has the same architecture as system 2,
but training with 8443 speakers (combineII). As results, adding
more data can slightly improve performance in all tasks.

Experiments of system 5 and system 6 are tested after the
mid-term deadline, so the evaluation set results is not reported.
These two experiments evaluate the performance of domain
adaptation methods. The results demonstrate that OCC does not
help the network in the FFSVC development tasks. We guess
it is because that the OCC loss is arranged on speaker embed-
ding. While narrowing the distance of domains, it also shortens
the distance of speaker embeddings. Maybe the method makes
sense in unsupervised situations, but it influences the speaker
verification performances. And adding SIDB can is an efficient
way in Vox1 test set, the improvement of minDCF is more than
30%. But it is a pity that the system does not perform as good
after score normalization. According to the raw data, the SIDB
has improved the minDCF and EER, but the improvement by
AS-Norm is not as obvious as other systems. Probably adding
more FFSVC training data can make SIDB work better.

In order to win a better ranking, we fuse the system 2, 3
and 4 with the weight of their performance in the development
tasks. The fusion system is system 6 and it is obviously that the
fusion operation can learn the advantages of each single system.
Finally, we fuse all the above ETDNN based systems (2∼6)
as system 8. The new fusion system outperform the submitted
fusion system in the three tasks. Figure 1 shows the DET plots

Figure 1: DET plots for FFSVC Task2 development set with 4
systems

with 4 systems, which can visually reflect our improvements.

4.3. Evaluation set results of submitted fusion systems

We submit the fusion system of 2,3,4 before the mid-term dead-
line and the result of the evaluation set is listed in Table 4. Al-
though we can observe a big gap between development results
and evaluation results, the performance progress trend on the
development set is still consistent with evaluation set: our sys-
tem perform best in task2, but also achieve good results in the
other two tasks. The difference may be caused by the choice of
score normalization cohort sets and text-dependent fine-tuning.

5. Conclusions
In this work, we propose a strengthened speaker verification
system for FFSVC 2020. Followed by data augmentation, the
network framework consists of TDNN, RNN and an attention
layer, which shows a powerful ability in embedding extract-
ing. In the training stage, we jointly train the model with AM-
softmax loss and domain adaptation loss. In the backend scor-
ing, we implement cosine similarity and score normalization.
Our submitted fusion system achieves good results and we be-
lieve our new system can get a better rank before the final dead-
line by adding some domain adaptation methods and more data.
However, evaluation set results are much worse than the devel-
opment set and the FFSVC results are out of line with Vox-
celeb, which leaves a great challenge to explore.
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