
The HCCL Speaker Verification System for Far-Field Speaker Verification
Challenge

Abstract

This paper describes the systems submitted by team HCCL
to the Far-Field Speaker Verification Challenge. Our previous
work in the AIshell Speaker Verification Challenge 2019 shows
that the powerful modeling abilities of Neural Network archi-
tectures can provide exceptional performence for this kind of
task. Therefore, in this challenge, we focus on constructing
deep Neural Network architectures based on TDNN, Resnet and
Res2net blocks. Most of the developed systems consist of Neu-
ral Network embeddings are applied with PLDA backend. First-
ly, the speed perturbation method is applied to augment data and
significant performance improvements are achieved. Then, we
explore the use of AMsoftmax loss function and propose to join
a CE-loss branch when we train model using AMsoftmax loss.
In addition, the impact of score normalization on perfomance
is also investigated. The final system, a fusion of four system-
s, achieves minDCF 0.459, EER 4.39% on task1 eval set, and
achieves minDCF 0.498, EER 5.08% on task3 eval set.
Index Terms: speaker verification, speed perturbation, text-
dependent, ftdnn, Resnet, Res2net, AMsoftmax loss

1. Introduction
In the past decade, with the development of deep learning,
speaker verification technology has significantly advanced in
telephone channel and close-talking. Recently, due to its exten-
sive applications in smart home and smart city, speaker verifica-
tion under far-filed and complex environment has aroused great
interest in research and authentic applications. However, with
the adverse impacts of the long-range fading, room reverbera-
tion, and complex environmental noises, etc., far-field speaker
verification is still challenging.

In this paper, we describe the speaker verification systems
developed by the team HCCL for the FFSVC2020 challenge[1].
The challenge aims to benchmark the state-of-the-art speak-
er verification technology under far-field and noisy conditions,
meanwhile, promote the development of new ideas and tech-
niques in speaker verification. The challenge has three tasks,
far-field text-dependent speaker verification from single micro-
phone array, far-field text-independent speaker verification from
single microphone array and far-field text-dependent speaker
verification from distributed microphone array. Our team main-
ly participate in task1 and task3.

According to our prior work in the AIshell Speaker Ver-
ification Challenge 2019[2], we explore several deep speak-
er embedding extractors based on TDNN(Time Delay Neural
Network)[3], Resnet(Residual Neural Network)[4] blocks and
Res2net[5] blocks in this challenge. In addition, the impact of
data augmentation, loss function, backend strategies and score
normalization techniques on systems performance is also ana-
lyzed.

2. System description
This section describes the systems we develope for the
FFSVC2020 challenge. Firstly, we introduce the datasets, data
augmentation and spectral feature used in model training. Sec-
ondly, we introduce several state-of-the-art models, including
the common TDNN xvector architecture[6], ETDNN(Extended
TDNN) xvector architecture[7][8], FTDNN(Factorized TDNN)
xvector architecture[9], Resnet[4][10][11][12] architecture and
Res2net[4] architecture. Specially, we explore a unique resnet
model, Res2net50 model, which proposed in paper[5]. Third-
ly, we explore the use of AMsoftmax(the Additive Mar-
gin Softmax)[13] loss to improve the performance. Fi-
nally, some backend methods, such as PLDA(Probabilistic
Linear Discriminant Analysis)[14][15], EDA(Enrollment Da-
ta Augmentation)[2], ASnorm(Adaptive Symmetric Score
Normalization)[16] and scores fusions are described.

2.1. Training data preparation

The training sets used in our experiments are VoxCeleb-
1+2[17][18], AIshell[19][20], HIMIA[2] and part of the D-
MASH Dataset that FFSVC2020[21] provides.

The challenge provides a training set with 120 speakers,
and a development set with 35 speakers. The HIMIA dataset
has 254 speakers in the training set and 42 speakers in the de-
velopement set. There are 405 speakers in total after excluding
duplicates in two data sets. For each text-dependent utterance
in the HIMIA dataset, we use the recordings from four record-
ing devices, which include one 25cm distance microphone and
three randomly selected microphone arrays (4 channels per ar-
ray). For the sake of clarity, the datasets notations are defined
as in table 1.

In order to increase the number of speakers in the HIMI-
A dataset and FFSVC dataset, the speed perturbation[22][23]
method is introduced to creat copies of the original signal with
speed factors of 0.8, 0.9 and 1.1 using standard Kaldi[24] speed
perturbation recipe. Because the speed perturbation results in
changed speech spectrum, the copies are considered to belong
to another speaker which differs from the original. In this way,
the number of speakers grows a lot.

For the purpose of increasing the amount and the diversity
of the training data, all training data, including copies created by
the speed perturbation, is augmented by using the freely avail-
able MUSAN[25] and RIRs datasets, creating four corrupted
copies of the original recordings with Kaldi recipe.

2.2. Feature extraction

All training datasets are resampled to 16kHz and pre-
emphasized before feature extraction. 30-dimensional MFCC-
s (Mel Frequency Cepstral Coefficients) extracted from 25ms
frames with 10 ms overlop, spanning the frequency range 20Hz-
7600Hz and 64-dimensional MFB (Log Mel-filter Bank Ener-
gies) from 25ms frames with 10ms overlop, with frequency lim-



Table 1: Datasets Notations

notation datasets augmentation num spks
Vox Voxceleb 1+2 noise aug 7363
Vox1 Voxceleb 1 noise aug 1211

AIshell AIshell noise aug 2401
FFSVC405 FFSVCdata +

HiMIA
noise aug 405

FFSVC1215 FFSVCdata +
HiMIA

noise + speed
0.9, 1.1 aug

405*3

FFSVC1620 FFSVCdata +
HiMIA

noise + speed
0.8, 0.9, 1.1 aug

405*4

its 0-8000Hz are used in this challenge.

2.3. Embedding Extractors

The systems based on TDNN used by our team include xvec-
tor, ETDNN xvector, FTDNN xvector. The systems based
on Resnet blocks use in this challenge name Resnet34 and
Resnet50.

Res2net block is a modified version of Resnet block, as
shown in Figure 1. The 3*3 filters are replaced by several small-
er filter groups, and these outputs are concatenated after convo-
lution operations. There are two important parameters, width
and scale. Scale represents the number of groups that one 3 ∗ 3
filter is split into. Width represents the number of channels of
each small group. For details, please refer to the paper A unique
multi-scale architecture for text-independent speaker verifica-
tion, which is submitted by our laboratory to interspeech2020.

Figure 1: Simplified Res2Net Block

2.4. Loss Function

Recent studies have shown that AMsoftmax loss has greatly im-
proved performance in the field of speaker verification[26]. We
also use AMsoftmax in this challenge. Meanwhile, we add CE-
loss branch to the network to do joint training. The AMsoftmax
loss function is formulated as:

LAMS =
1

N

∑
i

−log
es∗(cosθyi−m)

es∗(cosθyi−m) +
∑

j ̸=yi
e
s∗cos(θyj ,i)

where s is a scale factor and m is the margin factor.

2.5. Backend

In this work, either CS(cosine similarity) or PLDA is used for
scoring. Additionally, EDA and ASnorm are also applied.

2.5.1. Enrollment Data Augmentation

There is a large mismatch between the enrollmenat and the test
utterances because of the different recording environments. Re-
cent researches have shown that it’s an effective method to relif

this mismatch by using MUSAN and RIRs dataset to augment
enrollment utterances[2][21]. The final enrollment embedding
is obtained by averaging the embedding from the original ut-
trance and the augmented versions.

2.5.2. Score Normalization

Finally, ASnorm scheme is also adopted as proposed in [16].
For every pair (x1, x2), the normalized score can be calculated
as follows:

Ŝ(x1, x2) =
S(x1, x2)− µ1

σ1
+

S(x1, x2)− µ2

σ2

Here, µ1 and σ1 are calculated by matching x1 against the co-
hort set and similarly for µ2 and σ2. Means and standard devi-
ations are calculated using a set of N best scoring impostors.

3. Implementation, Result and Analyze
We develop three series of systems based on TDNN and Resnet
blocks, including Resnet systems used pyTorch, TDNN system-
s used Kaldi[24], TDNN systems used pyTorch. The first se-
ries are built using pyTorch, and based on Resnet and Res2net
model. The second series are built using the Kaldi toolkit, and
the TDNN and ETDNN xvector models are first pre-trained,
then FFSVC2020 train-dataset and HIMIA dataset are used to
finetune the model. The third series are built using pyTorch,
and the ETDNN and FTDNN xvector models are trained only
using FFSVC2020 train-dataset and HIMIA dataset. In addi-
tion, we explain the naming rules which is followed through-
out this paper for all systems. The naming rules are divid-
ed into two categories, finetune and non-finetune. The first is
named as ⟨the training data used for base model⟩-⟨feature⟩-
⟨architecture⟩-⟨the training data used for finetune⟩-⟨feature⟩-
finetune, and the second is named as ⟨the training data used for
model⟩-⟨feature⟩-⟨architecture⟩(-⟨loss function⟩).

3.1. Resnet systems used pyTorch

All systems in this series are implemented with pyTorch and
use MFB as input feature. Meanwhile, dropout is applied to
embedding layer, and CS is used for scores in this series. In
addition, EDA is used in all results, including other series.

Vox1-MFB-Resnet34-FFSVC405-MFB-finetune: Con-
sidering the number of speakers in FFSVC405, finetune is a
good transfer learning method for this challenge. The Resnet34
model, which described in [10], is pre-trained with 1211 speak-
ers in Vox1-MFB. The widths (number of channels) of the resid-
ual blocks used in our experiments are {32,64,128,256}. In
this stage, the model is trained using stochastic gradient descent
with weight decay 1e-4 and momentum 0.9. The learning rate
is set to 0.1, 0.01, 0.001 and is switched when the training loss
plateaus. After the pre-trained model converges, FFSVC405-
MFB is used to finetune the model with the learning rate 0.001.

FFSVC405-MFB-Resnet34: For comparison, the resnet34
model is directly trained with FFSVC405-MFB. Stochastic gra-
dient descent optimization is used with weight decay 1e-4 and
momentum 0.9. The learning rate is set to 0.1, 0.01, 0.001 and
is switched when the training loss plateaus.

In order to facilitate the training of PLDA, the embedding-
size is expanded from the original 128 dimensions to 512 di-
mensions. The impact of embedding size on performance is al-
so explored by comparative experiments. Meanwhile, Spectrum
masking[27] is used in our training stage, and masking 5%-10%



of the Spectrogram for each utterance. The results are summa-
rized in Table 2, and all scores in this Table use CS for scoring.
It could find that embedding size has no effect on system perfor-
mance, spectrum masking can yield a 3%-5% relative improve-
ment in EER and minDCF, finetune can yield about 8% relative
improvement in EER and 2%-4% improvement in minDCF.

Table 2: Research of mask and embedding size

system embedding size mask minDCF EER
Vox1-MFB 128 no 0.721 6.49
-Resnet34- 128 yes 0.690 6.22
FFSVC405 512 no 0.719 6.49

-MFB-fintune 512 yes 0.677 6.28
128 no 0.738 7.16

FFSVC405 128 yes 0.705 6.75
-MFB-Resnet34 512 no 0.729 6.98

512 yes 0.722 6.78

Vox1-MFB-Resnet34-FFSVC1215-MFB-finetune: This
extractor is similar to Vox1-MFB-Resnet34-FFSVC405-MFB-
finetune, with the difference of using FFSVC1215-MFB to fine-
tune.

AIshell-MFB-Resnet34-FFSVC1215-MFB-finetune:
This extractor is similar to Vox1-MFB-Resnet34-FFSVC1215-
MFB-finetune, with the difference of using AIshell-MFB, 2401
spks, to pre-train the model.

FFSVC1215-MFB-Resnet34: This extractor is similar
to FFSVC405-MFB-Resnet34, with the difference of using
FFSVC1215-MFB to finetune.

FFSVC1215-MFB-Res2net50: This extractor is similar
to FFSVC1215-MFB-Resnet34, with the difference of using
Res2net50 embedding extractor, with width 16 and scale 4.

FFSVC1620-MFB-Resnet34: This extractor is similar
to FFSVC405-MFB-Resnet34, with the difference of using
FFSVC1215-MFB to finetune.

FFSVC1620-MFB-Res2net50: This extractor is similar
to FFSVC1215-MFB-Resnet34, with the difference of using
Res2net50 embedding extractor.

The results of this six systems are summarized in Table 3. It
could find that the dataset used for pre-training has little effec-
t on the final performance, and finetune is no longer effective
when the number of speakers in datasets is comparable to the
pre-training set. It is interesting that speed perturbation with
speed factors of 0.9 and 1.1 achieves about 10% relative im-
provement in EER and 6% improvement in minDCF. Therefore,
we draw the conclusion that speed perturbation is an effective
data augmentation method to prevent over-fitting when numbers
of speakers is not enough. In addition, Res2net blocks improves
the performance by 3% relatively compared to Resnet blocks.
Res2net blocks could get more receptive field to improve the
multi-scale feature extraction ability by using scale and width
so that Res2net blocks obtains better performance than Resnet
blocks.

Table 3: Results of series of Resnet systems

system minDCF EER
Vox1-MFB-Resnet34-

FFSVC1215-MFB-finetune 0.598 5.63
AIshell-MFB-Resnet34-

FFSVC1215-MFB-finetune 0.575 5.02
FFSVC1215-MFB-Resnet34 0.548 4.62
FFSVC1215-MFB-Res2net50 0.530 4.49
FFSVC1620-MFB-Resnet34 0.539 4.37
FFSVC1620-MFB-Res2net50 0.520 4.30

3.2. TDNN systems used Kaldi

All systems in this series are implemented with Kaldi and M-
FCC are used as input feature. In addition, all embeddings are
transformed to 200 dimension using LDA, and then unit-length
normalization and standard PLDA are applied. LDA/PLDA is
trained on the finetune dataset. Here, xvector represents the
common TDNN xvector model.

AIshell-MFCC-xvector-FFSVC1620-MFCC-finetune:
According to the Resnet series systems, AIshell-MFCC is used
to pretrain xvector model, then FFSVC1620-MFCC is used to
finetune. The model is finetuned with an initial learning rate of
0.001 and a final learning rate of 0.0001.

AIshell-MFCC-xvector-FFSVC405-MFCC-finetune:
This extractor is similar to AIshell-MFCC-xvector-FFSVC1620
-MFCC-finetune, with the difference of using FFSVC405-
MFCC to finetune.

AIshell-MFCC-ETDNN-FFSVC1620-MFCC-finetune:
This extractor is similar to AIshell-MFCC-xvector-FFSVC1620
-MFCC-finetune. However, the model to pre-train is ETDNN
xvector.

AIshell-MFCC-xvector-FFSVC1215-MFCC-finetune:
This extractor is similar to AIshell-MFCC-xvector-FFSVC1620
-MFCC-finetune, with the difference of the finetune dataset.
Only part of FFSVC1215-MFCC is used to finetune the base
model. During the finetune stage, the accuracy of the training
dataset increases rapidly to 99%, and the valid dataset is
also rapidly maintained at 96%. So, we attempt to increase
difficulty by remove the clean data from close-talking mic
in the HIMIA dataset. Meanwhile, considering to channel
mismatch between the close-talking enrollment utterance from
cellphone and the far-field testing speech from microphone,
the recordings from 25cm distance cellphone in The DMASH
dataset is not removed. In addition, the impact of the learning
rate during finetune stage is explored in our experiments.
we attempt to fix the first 6 layers with the learning rate
of 0.001-0.0001, and then we untie the fixed layer with
the learning rate of 0.0001-0.00005, we named this system
AIshell-MFCC-xvector-FFSVC1215-MFCC-finetune-V02.
The results of these five systems are shown in Table 5.

Table 5: Results of series of TDNN-Kaldi systems

system minDCF EER
AIshell-MFCC-xvector-

FFSVC405-MFCC-finetune 0.628 6.36
AIshell-MFCC-xvector-

FFSVC1620-MFCC-finetune 0.552 5.82
AIshell-MFCC-ETDNN-

FFSVC1620-MFCC-finetune 0.571 5.21
AIshell-MFCC-xvector-

FFSVC1215-MFCC-finetune 0.476 4.20
AIshell-MFCC-xvector-

FFSVC1215-MFCC-finetune-V02 0.499 4.52

3.3. TDNN systems used pyTorch

All systems in this series are implemented with pyTorch and use
MFB as input feature. Particularly, AMS represents the AMsoft-
max loss is adopted in model training, CEAMS represents that
the CE-loss branch is added when we train the models using
AMsoftmax loss.



Table 4: Research of backend technique

System cosine PLDA scoring Asnorm
minDCF EER minDCF EER minDCF EER

FFSVC1620-MFB-Resnet34 0.539 4.37 0.530 4.33 0.461 4.24
FFSVC1620-MFB-Res2net50 0.520 4.30 0.521 4.22 0.477 4.16

AIshell-MFCC-xvector-FFSVC1215-MFCC-finetune - - 0.496 5.20 0.484 4.67
FFSVC1215-MFB-FTDNN-CEAMS 0.505 4.69 0.494 4.32 0.478 3.91

FFSVC1215-MFB-ETDNN-AMS: This extractor is sim-
ilar to FFSVC1215-MFB-Resnet34, with the difference of us-
ing ETDNN model and AMsoftmax loss function. Parameters
m and s are respectively equal to 0.1 and 30 during the whole
training stage. In addition, weight decay uses 1e-3.

FFSVC1215-MFB-FTDNN-AMS: This extractor is simi-
lar to FFSVC1215-MFB-ETDNN-AMS, with the difference of
using FTDNN model.

FFSVC1215-MFB-FTDNN-CEAMS: This extractor is
similar to FFSVC1215-MFB-ETDNN-AMS, with the differ-
ence of using CEAMsoftmax loss. During the training stage
using AMsoftmax loss, the training process is extremely unsta-
ble, and is very prone to overfit, especially when parameters
m is greater than 0.1. Although the copies which are created
by using speed perturbation is considered to belong to diffrent
speakers, it’s similar to the original signal to some extent. In
addition, the deep network is prone to overfit when small-scale
training data is available, not to mention similar uttrances. To
address this problems, CE-loss is added to the network to guide
and assist the model training in the early stage. We first add a
CE-loss class prediction branch to conventional feedforward ar-
chitecture in parallel with the AMsoftmax-loss class prediction
branch, in practice, the CE-loss class prediction branch is added
after the statistics pooling layer of the FTDNN network, and has
the same network structure as the AMsoftmax-loss branch. The
weight of CE-loss is set to 1.0, 0.5, 0.1 and is switched when
the training loss plateaus.

FFSVC1620-MFB-FTDNN-CEAMS: This extractor is
similar to FFSVC1215-MFB-ETDNN-AMS, with the differ-
ence of using FFSVC1620-MFB.

Table 6: Results of series of TDNN-pyTorch systems

system minDCF EER
FFSVC1215-MFB-ETDNN-AMS 0.578 5.57
FFSVC1215-MFB-FTDNN-AMS 0.509 5.27

FFSVC1215-MFB-FTDNN-CEAMS 0.455 4.21
FFSVC1620-MFB-FTDNN-CEAMS 0.434 4.18

The results of the above four models are summarized in
Table 6. During the experiment, the model training stability
has been greatly improved after adding CE-loss branch, and it
achieves about 8% relative improvement in minDCF and 16%
improvement in EER.

3.4. Backend

We select four of the best models to do backend scoring. The
methods we use includes LDA, PLDA, ASnorm and score fu-
sion. All of the four models use PLDA scoring and ASnorm.
Firstly, for systems implemented with pytorch, we transform
the centered, whitened, and unit-length normalized embeddings
by LDA, without dimensionality reduction. Then, one Gaussian
PLDA is trained either on FFSVC1215 or FFSVC1620 set. Fi-
nally, we use ASnorm to post-process the PLDA verification.
We use the eval set and dev set as each other’s cohort set. For
each enrollment from 25cm distance cellphone, we randomly s-

elect 2700 single far-field microphone arrays from the cohort set
to score with it, each testing utterance is similar. Then we select
the top 5% of sorted cohort scores to calculate the normaliza-
tion. The result of these four systems are shown in Table 4.

3.5. Submitted system and result

We submit the fusion results of the above four systems. Con-
sidering that task1 and task3 are similar, we use the same
models in these two tasks. These four systems are re-
named as follows, FFSVC1620-MFB-Resnet34 named sys-
tem A,FFSVC1620-MFB-Res2net50 named system B, AIshell-
MFCC-xvector-FFSVC1215-MFCC-finetune named system C,
FFSVC1215-MFB-FTDNN-CEAMS named system D. The fu-
sion results are summarized in Table 7.

Table 7: results of submitted systems

System task1 dev task1 eval task3 eval
minDCF EER minDCF EER minDCF EER

A+C+D 0.384 3.36 0.460 4.40 0.501 5.23
A+B+C+D 0.375 3.25 0.459 4.39 0.498 5.08

4. Conclusions
In this paper, we detail every aspects of our systems submit-
ted to FFSVC2020 challenge. We describe the usage of data
sets, the strategy of data augmentation, various embedding ex-
tractors, backend technique. Our data augmentation strategy
is greatly helpful when only small-scale training data is avail-
able. In addition, AMsoftmax loss will be easier to ultilize after
adding CE-loss branch. Res2net block could improve perfor-
mance by getting multi-scale feature infomation. The above
three points might be useful to other researchers. Finally, we
don’t make full use of the infomation between multi-channel,
we will explore how to ultilize these infomations in the future.

5. Acknowledgements
This work is partially supported by the National Natural Science
Foundation of China (Nos. 11590772,11590770).

6. References
[1] X. Qin, M. Li, H. Bu, R. K. Das, W. Rao, S. Narayanan, and

H. Li, “The ffsvc 2020 evaluation plan,” arXiv preprint arX-
iv:2002.00387, 2020.

[2] X. Qin, H. Bu, and M. Li, “Hi-mia: A far-field text-dependent
speaker verification database and the baselines,” in 2020 IEEE In-
ternational Conference on Acoustics, Speech and Signal Process-
ing (ICASSP). IEEE, 2020, pp. 7609–7614.

[3] D. Snyder, D. Garcia-Romero, and D. Povey, “Time delay deep
neural network-based universal background models for speak-
er recognition,” in 2015 IEEE Workshop on Automatic Speech
Recognition and Understanding (ASRU). IEEE, 2015, pp. 92–97.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 770–778.



[5] S. Gao, M.-M. Cheng, K. Zhao, X.-Y. Zhang, M.-H. Yang, and
P. H. Torr, “Res2net: A new multi-scale backbone architecture,”
IEEE transactions on pattern analysis and machine intelligence,
2019.

[6] D. Snyder, D. Garcia-Romero, D. Povey, and S. Khudanpur,
“Deep neural network embeddings for text-independent speaker
verification.” in Interspeech, 2017, pp. 999–1003.

[7] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudan-
pur, “X-vectors: Robust dnn embeddings for speaker recognition,”
in 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2018, pp. 5329–5333.

[8] D. Snyder, D. Garcia-Romero, G. Sell, A. McCree, D. Povey, and
S. Khudanpur, “Speaker recognition for multi-speaker conversa-
tions using x-vectors,” in ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICAS-
SP). IEEE, 2019, pp. 5796–5800.

[9] D. Povey, G. Cheng, Y. Wang, K. Li, H. Xu, M. Yarmohammadi,
and S. Khudanpur, “Semi-orthogonal low-rank matrix factoriza-
tion for deep neural networks.” in Interspeech, 2018, pp. 3743–
3747.

[10] W. Cai, J. Chen, and M. Li, “Exploring the encoding layer and loss
function in end-to-end speaker and language recognition system.”
in Proc. of Odyssey, 2018, pp. 74–81.

[11] J. Villalba, N. Chen, D. Snyder, D. Garcia-Romero, A. McCree,
G. Sell, J. Borgstrom, L. P. Garcı́a-Perera, F. Richardson, R. De-
hak et al., “State-of-the-art speaker recognition with neural net-
work embeddings in nist sre18 and speakers in the wild evalua-
tions,” Computer Speech & Language, vol. 60, p. 101026, 2020.

[12] A. Gusev, V. Volokhov, T. Andzhukaev, S. Novoselov, G. Lavren-
tyeva, M. Volkova, A. Gazizullina, A. Shulipa, A. Gorlanov,
A. Avdeeva et al., “Deep speaker embeddings for far-field s-
peaker recognition on short utterances,” arXiv preprint arX-
iv:2002.06033, 2020.

[13] F. Wang, J. Cheng, W. Liu, and H. Liu, “Additive margin softmax
for face verification,” IEEE Signal Processing Letters, vol. 25,
no. 7, pp. 926–930, 2018.

[14] S. Ioffe, “Probabilistic linear discriminant analysis,” in European
Conference on Computer Vision. Springer, 2006, pp. 531–542.

[15] S. J. Prince and J. H. Elder, “Probabilistic linear discriminant anal-
ysis for inferences about identity,” in 2007 IEEE 11th Internation-
al Conference on Computer Vision. IEEE, 2007, pp. 1–8.

[16] S. Cumani, P. D. Batzu, D. Colibro, C. Vair, P. Laface, and V. Vasi-
lakakis, “Comparison of speaker recognition approaches for real
applications,” in Twelfth Annual Conference of the International
Speech Communication Association, 2011.

[17] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb: a
large-scale speaker identification dataset,” arXiv preprint arX-
iv:1706.08612, 2017.

[18] J. S. Chung, A. Nagrani, and A. Zisserman, “Voxceleb2: Deep
speaker recognition,” arXiv preprint arXiv:1806.05622, 2018.

[19] H. Bu, J. Du, X. Na, B. Wu, and H. Zheng, “Aishell-1: An
open-source mandarin speech corpus and a speech recognition
baseline,” in 2017 20th Conference of the Oriental Chapter of
the International Coordinating Committee on Speech Databases
and Speech I/O Systems and Assessment (O-COCOSDA). IEEE,
2017, pp. 1–5.

[20] J. Du, X. Na, X. Liu, and H. Bu, “Aishell-2: transforming
mandarin asr research into industrial scale,” arXiv preprint arX-
iv:1808.10583, 2018.

[21] X. Qin, M. Li, H. Bu, W. Rao, R. K. Das, S. Narayanan, and H. Li,
“The interspeech 2020 far-field speaker verification challenge,” in
Interspeech 2020, 2020.

[22] T. Ko, V. Peddinti, D. Povey, and S. Khudanpur, “Audio augmen-
tation for speech recognition,” in Sixteenth Annual Conference of
the International Speech Communication Association, 2015.

[23] H. Yamamoto, K. A. Lee, K. Okabe, and T. Koshinaka, “Speaker
augmentation and bandwidth extension for deep speaker embed-
ding,” in Interspeech 2019, 2019, pp. 406–410.

[24] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al.,
“The kaldi speech recognition toolkit,” in IEEE 2011 workshop
on automatic speech recognition and understanding, no. CONF.
IEEE Signal Processing Society, 2011.

[25] D. Snyder, G. Chen, and D. Povey, “Musan: A music, speech, and
noise corpus,” arXiv preprint arXiv:1510.08484, 2015.

[26] Y. Liu, L. He, and J. Liu, “Large margin softmax loss for speaker
verification,” in Interspeech 2019, 2019, pp. 2873–2877.

[27] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk,
and Q. V. Le, “Specaugment: A simple data augmentation method
for automatic speech recognition,” in Interspeech 2019, 2019, pp.
2613–2617.


