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Abstract

In this report, we describe the submissions of International
Business Group AI (IBG AI) team to Far-Field Speaker Verifi-
cation Challenge 2020. Our submitted system for task 2 is a fu-
sion of four models based on ResNet with Squeeze-Excitation.
The first two networks have ResNet152 topologies with or with-
out voice activity detections (VAD), while the last two models
use ResNet203. As for task 1, only the two ResNet203 model
is used to obtain the fusion model. 90-dimensional FBank fea-
tures are extracted as the input of models, and all the models
are trained by using softmax loss and additive angular margin
(AAM) loss during train and fine-tune stages respectively. Be-
sides, we adjusted the proportion of training data and fine-tuned
some extra steps. Finally, adaptive symmetric score normaliza-
tion is applied to normalize scores. As a result, our best systems
for task1 and task2 achieved 0.372 minDCF and 0.317 minDCF
on the challenge evaluation set respectively.
Index Terms: speaker verification, speaker recognition, far-
field, deep neural network

1. Introduction
Recently, speaker recognition has received an increasing
amount of interests in smart applications. Although it has made
a great progress with the development of deep learning and the
availability of large-scale datasets, yet there are still significant
challenges. The method should be able to generalize well in or-
der to be robust to noisy, far-field and new possible deployment
conditions.

Deep speaker embedding based systems[1, 2] (like x-
vectors) have been shown to significantly outperform conven-
tional i-vector[3] based systems in terms of speaker recogni-
tion performance. And BUT system[4] showed that the deeper
network such as ResNet160 is more effective than Time Delay
Neural Network (TDNN)[2]. In addition, some methods from
face recognition field were used for speaker recognition[5]. A
comparative study of different loss functions for DNN based
speaker embeddings was presented in [6].

This report describes the IBG AI speaker recognition sys-
tems submitted to task1 and task2 in FFSVC 2020[7]. In gen-
eral, the speaker recognition system can be divided into three
parts, the front-end, the speaker embedding and the back-end.
The rest of this document is organized as follows: in Section 2,
we describe the details of each part of our system, in Section 3,
several experiments are conducted to get the result, and the final
conclusion are presented in Section 4.

2. System components description
In this section, we introduce all the components used in our
systems.

2.1. Front-End

2.1.1. Training data, Augmentations

FFSVC 2020 challenge dataset includes Chinese Mandarin au-
dios received at different distances, more information about the
dataset can be found in [7]. And the goal of task1 and task 2 is to
determine whether an audio pair which consists of a near-field
(at 25 cm) and a far-filed audio is from the same speaker, the dif-
ference of the two tasks is that task 1 focus on text-dependent
audios while task2 uses text-independent recordings.

As any publicly open and freely accessible dataset shared
on openslr.org1 before the challenge is allowed to use, we se-
lected 7 datasets for training. The train set consists of SLR33
(Aishell-1)[8], SLR38[9], SLR47[10], SLR62[11], SLR68[12],
SLR49[13] and the train data FFSVC 2020 provided. After re-
move the speaker that doesn’t have enough audios, the train set
contains 10674 speakers in total.

Besides, SLR17 (MUSAN)[14] and SLR28 (Room Impulse
Response and Noise Database, RIRs)[15] are also used to argu-
ment the train data. The augmentation process was based on
the Kaldi recipe2and it resulted in additional 4 times utterances
belonging to the following categories: reverberated using RIRs,
augmented with Musan noise, music, and babel.

2.1.2. Features and VAD

All of our models make use of FBank features, the 90-
dimensional FBank features are extracted in the way similar
to BUT system[4]. It is extracted from audios which is down-
sampled to 16kHz, its frequency is limited to 20-7600Hz, and
the frame length is 25ms with 10ms shift. As audios in differ-
ent dataset have various volume levels, and there is also a large
volume gap between audios received at different distances, the
FBank feature is normalized by subtracting the mean and di-
vided by the standard deviation with a sliding window of 3 sec-
onds.

As for VAD, two of our four models make use of it, while
the other two not. A basic energy-based VAD in Kaldi is ap-
plied, and only the valid frames are selected.

2.2. Speaker embedding

2.2.1. Model structure

The backbone network of our system is the well-known ResNet
topology[16]. Inspired by BUT system, we halved the number
of channels of each ResNet block, thus can get a deeper network
with the similar number of model parameters. The details of the
ResNet152 topology is shown in Table 1, while in ResNet203,
the number of layers in each ResNet block is changed to [3, 12,
49, 3] .

1https://openslr.org/index.html
2https://github.com/kaldi-asr/kaldi



In addition, attentive statistics pooling layer[17] is utilized
to aggregate frame-level representation on utterance level, ben-
efit from the attentional mechanism, the model is able to assign
bigger weights to more important frames when calculate statis-
tics, which makes the model more robust to the external envi-
ronment interference and silence frames.

In our models, the shape of the last ResNet block output
is (d1, T1, c), c is the number of channels, d1 and T1 represent
the number of feature dimensions and frames after they pass
through ResNet blocks respectively. In order to reduce the at-
tention network parameters, the output is averaged along FBank
feature dimension, which leads to a matrix H of shape (T1, c),
and then additive attention with two fully-connected layers is
utilized to get the weights of every frames et:

et = softmax(f(f(ht))) (1)

where f(.) is fully connected layer with nonlinear activation
function, ht is each row of H . Finally, the weighted mean and
standard deviation of each dimension is concatenate together as
the input of the rest network.

Besides, as the model benefits from a wider temporal con-
text, it could be beneficial to rescale the frame-level features
given global properties of the recording. For this purpose, 2-
dimensional Squeeze-Excitation (SE) blocks is introduced to
the get the weights of each channel[18] in the last two ResNet
block as shown in Table 1. The first component of an SE-block
is the freeze operation which calculates the mean of each chan-
nel:

z =
1

T0d0

T0∑
t=1

d0∑
i=1

ut,i (2)

where ut,i is the vector consists of every channel data at
time t and feature I , d0 and T0 represent the number of fea-
ture dimensions and frames after passing through the convolu-
tion network in ResNet block respectively. Then two-layer fully
connected layer is used to get the weights of each channel:

s = σ(f(f(z))) (3)

where σ denotes the sigmoid function, and the resulting vector
s contains weights sc between 0 and 1, which are applied to the
original input by channel-wise multiplication.

As shown in Table 1, speaker embeddings (512 dimen-
sional) are extracted from the last batch normalization layer
(Dense1-Relu-BN in Table1). There is no bias used in the last
fully connected layer, so the weights of it can be regarded as
the embedding centers of speakers in train set. These speakers
embedding center is used as cohort in score normalization.

2.2.2. Loss Function

We trained the raw model with Softmax cross entropy loss, and
then fine-tune it with AAM loss. AAM loss was proposed for
face recognition, it introduces a large margin m to improve the
intra-class compactness and inter-class discrepancy:

LAAM = − 1

N

N∑
i=1

log
es(cos (θyi+m))

es(cos (θyi+m)) +
∑C
j=1,j 6=yi e

s cos θj

(4)
where θi is the angle between the i-th class center and the em-
bedding, s is the scale factor and C is the number of speakers.
In all of our experiments, m is set to 0.25 and s is set to 30.

Table 1: The proposed ResNet152 architecture. C in the last
row is the number of speakers. S in Structure column indicates
the stride of convolution. The first dimension of the input shows
number of filter-banks and the second dimension indicates the
number of frames

Layer name Structure Output

Input - (90, L, 1)
Conv2D-1 3× 3,S=1 (90, L, 32)

ResNetBlock1

1× 1, 32
3× 3, 32
1× 1, 32

× 3, S=1 (90, L
2
, 128)

ResNetBlock2

1× 1, 64
3× 3, 64
1× 1, 32

× 8, S=2 (45, L
4
, 256)

ResNetBlock3

 1× 1, 128
3× 3, 128
1× 1, 32

SE− Block

× 36, S=2 (23, L
6
, 512)

ResNetBlock4

 1× 1, 256
3× 3, 256
1× 1, 32

SE− Block

× 3, S=2 (12, L
8
, 1024)

Att-StatPooling - (24, 1024)
Flatten - 24576

Dense1-Relu-BN - 512
Dense2 - C

2.3. Back-End

The cosine distance was used to discriminate speakers. In ad-
dition, adaptive symmetric score normalization (AS-norm)[19]
which computes an average of normalized scores from Z-
norm[20] and T-norm[21] was adopted. The cohort was created
by using the weights of the last fully connected layer as speaker
center. It consisted of 10674 speaker centers. In AS-norm, only
part of the cohorts are selected to compute mean and variance
for normalization. Usually X top scoring or most similar co-
horts are selected; X was set to ten percent of total numbers of
speakers for all experiments.

2.4. Fusion

For score level, fusion was performed by computing the average
of the scores of the individual systems.

3. Results and Discussion
At every training step, we random sample 32 speakers, and for
each speaker, 4 segments which are randomly cropped between
250 frames and 300 frames are selected, if the length of a audio
is smaller than 250 frames, we repeat it util reach the minimum
length, i.e. 250 frames. Softmax with cross entropy is used
to train the raw system, and then AAM loss is utilized to fine-
tune the model. In all training procedure, we select stochastic
gradient descent (SGD) as the optimizer and the weight decay
is set to 0.0002 in Pytorch. The initial learning rate to train the
raw model is set to 1.0 while that to fine-tune the model is set



Table 2: Results of our systems for FFSVC 2020 task 2 challenge with/without score normalization. The 40dims prefix indicates
40-dimensional FBank features, SE indicates Squeeze-Excitation Block

ID VAD Embd NN Extra Fine-Tune Development Set Evaluation Set
minDCF EER minDCF EER

1 No 40dims-ResNet152 No 0.4849/0.4778 3.31% /3.27% - -
2 No ResNet152 No 0.4116/0.3869 3.16%/2.95% - -
3 No ResNet152-SE No 0.3736/0.3462 2.86%/2.68% - -
4 No ResNet152-SE Yes 0.3376/0.3188 2.27%/2.24% - -
5 No ResNet203-SE Yes 0.3544/0.3263 2.3%/2.24% - -
6 Yes ResNet152-SE Yes 0.3505/0.3377 2.23%/2.18% - -
7 Yes ResNet203-SE Yes 0.3446/0.3218 2.03%/2.17% - -

Fusion 4-7 0.3222/0.2898 2.06%/2.03% -/0.3165 -/2.61%

Table 3: Results of our systems for FFSVC 2020 task 1 challenge with/without score normalization. SE indicates Squeeze-Excitation
Block

ID VAD Embd NN Extra Fine-Tune Development Set Evaluation Set
minDCF EER minDCF EER

1 No ResNet152-SE Yes 0.4101/- 2.8%/- - -
2 No ResNet203-SE Yes 0.3327/0.3164 2.21%/2.11% - -
3 Yes ResNet152-SE Yes 0.436/- 2.96%/- - -
4 Yes ResNet203-SE Yes 0.36/0.3475 2.3%/2.29% - -

Fusion 2, 4 0.3152/0.301 2.19%/2.13% -/0.372 -/3.17%

to 0.1. During both training stages, learning rate halved every
10000 steps and the model is trained for 100000 steps in each
stage.

In addition, in order to highlight FFSVC original training
data, after fine-tune the model for 100000 steps, we adjusted the
proportion of training data, that is, the sampled 32 speakers at
each step consists of 16 speakers of FFSVC original data and 16
speakers of other datasets, and then fine-tine it for extra 10000
steps. It is referred as extra fine-tune in the following text. The
difference of our systems for task 1 and task 2 is shown in this
extra fine-tune stage. For task 2, the audios of fixed content ”ni
hao mi ya” are filtered out. While for task 1, only these fixed
content part is retained as FFSVC original data, and the crop
range is changed to [130, 150] frames. The following experi-
ments show that this extra fine-tune can make an improvement.

The ResNet152 in our system has 39M parameters while
ResNet203 has 44.6M parameters. Calculating the score of
each trial by using ResNet152 will consumes 3.7GB memory
of Tesla P40 GPU and takes about 250 milliseconds, and these
costs for ResNet203 increase to 4.3GB memory and 285 mil-
liseconds.

The results of the models for task 2 are displayed in Table
2, the fusion which makes use of Model 3, Model 4, Model 5
Model 6 is our best submission, and achieve 0.3165 minDCF
and 2.61% EER on the challenge evaluation set. The scores are
presented in the way without/with score normalization, for ex-
ample, the scores 0.4849/0.4778 for model 1 means it is 0.4849
without score normalization and 0.4778 with score normaliza-
tion. Score normalization is useful since it can get better re-
sults in all experiments. All models uses 90-dimensional Fbank
features except model 1, it is obvious that 90-dimensional fea-
tures is much better than 40-dimensional features by comparing
model 1 and model 2. Besides, it also can be concluded that
SE-block is helpful for the system by comparing model 2 and

model 3. In addition, extra fine-tune can also make an improve-
ment as model 4 is better than model 3. However, deepening the
network and using VAD both have no obvious and stable effect
for the system by analyzing model 4 to model 7.

The results of the models for task 1 are shown in Table 1,
since ResNet203 works better than ResNet152 in task 1, the
submitted fusion only combined model 2 and model 4, and got
the result of 0.372 minDCF and 3.17% EER on the evaluation
set.

4. Conclusions
In this work, we presented our speaker verification system for
FFSVC 2020 task2 and task 1. Moreover, by the comparative
experiments, it is concluded that higher dimensional input fea-
tures, SE block, extra fine-tune and score normalization are ben-
eficial for the system, while VAD not. Our final submission
achieved 0.372 minDCF and 0.317 minDCF for task 1 and task
2 on the challenge evaluation set respectively.
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