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Abstract
In this paper, we present the IMU&Elevoc submissions to

Far-Filed Speaker Verification Challenge 2020 (FFSVC2020)
on the task of far-field text-dependent speaker verification from
a single microphone array and microphone arrays. We describes
our submissions to this challenge including explored feature ex-
tractor topologies, pooling methods, classifier alternatives, and
data augmentation strategy. The final system, a fusion of five
systems, yields minDCF 0.49 on the Task 1 which achieves 6th
place, and minDCF 0.42 on the Task 3 which ranks 3rd place
on the leaderboard among all participants.
Index Terms: speaker verification, deep embedding, FFSVC
2020

1. Introduction
The goal of the Far-Filed Speaker Verification Challenge 2020
(FFSVC2020) is to assess the state-of-the-art in speaker recog-
nition under noisy and far-field conditions. There are three
different tasks under well-defined conditions: far-field text-
dependent speaker verification from a single microphone array,
far-field text-independent speaker verification from a single mi-
crophone array, and far-field text-dependent speaker verifica-
tion from distributed microphone arrays. To simulate the real-
life scenario, enrollment utterances are recorded from close-talk
cellphone, while the test utterances are recorded from far-field
microphone arrays. Our submissions focus on Task 1 and Task
3, which is about far-field text-dependent speaker verification
from a single microphone array and distributed microphone ar-
rays.

In this paper, we describe our submissions to the FFSVC
2020 challenge. All our systems are based on deep neural net-
work (DNN) embeddings. Specifically, we employ DenseNet
as embedding learning architecture [1, 2]. For better obtain
utterance-level representation aka deep speaker embedding or
embedding for short, we investigate three pooling methods to
improve the attentive pooling [3, 4, 5], i.e., the bidirectional at-
tentive pooling, multi-head bidirectional attentive pooling and
multi-resolution multi-head bidirectional attentive pooling. The
goal of training the network is to produce embeddings that gen-
eralize well to speakers beyond those in the training set, aim-
ing to maximize the within-class similarity and minimize the
between-class similarity. In general, there are two deep feature
learning paradigms, learning with class-level labels and learn-
ing with pair-wise labels. The former employs a classification
loss function (e.g., softmax cross-entropy loss [6, 7, 8] to opti-
mize the similarity between samples and weight vectors. The
latter leverages a metric loss function (e.g., triplet loss [9, 10])
to optimize the similarity between samples. In this end, we ex-
plore the performance differences of the speaker system under
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different deep feature learning paradigms, additive margin soft-
max loss [11], triplet loss and a unified loss function for two
elemental learning paradigms, respectively.

In FFSVC2020, noisy and far-field conditions remain ma-
jor challenge the models. In order to address these issues, we
investigate online data augmentation to improve the robustness
of the model. Finally, fusion plays an important role in our fi-
nal submissions. We use a greedy search to find the five best
systems and fuse them to get the primary system.

The rest of this paper is organized as following. Section
2 describes deep neural network with various pooling methods
and loss functions in details, followed by the configurations of
data sets, the acoustic features, training details in Section 3.
Score strategies are introduced in Section 4. The performance
of each single system, as well as the fused primary system, is
presented in Section 5. We conclude this paper in Section 6.

2. Deep Embedding System
As shown in Figure 1, the deep embedding system can be de-
composed into a frame-level feature extractor, a pooling layer,
an utterance-level feature extractor and a classifier. The pooling
layer converts variable-length frame-level features into a fixed-
length embedding. The classifier takes the embedding and pro-
duces a posterior probability over the set of training speakers.
For our submissions, we employ the DenseNet [1, 2] as frame-
level feature extractor and explore three pooling layer topolo-
gies and three classifier alternatives.

2.1. Pooling

The aforementioned pooling layer is an essential component to
capture long term speaker characteristic for speaker recognition
systems [12]. In light of the recent advent of using attention
mechanism [13], we describe our proposed pooling methods
mainly from the view of attentive pooling [3, 4, 5].

Suppose a speech segment of duration N produces a se-
quence of N outputs vectors, {h1, h2, ..., hN}. The hidden state
at frame index t is a vector ht ∈ Rd with t ∈ [1, N ] and d
representing feature dimension. We first define a self-attentive
scoring function, index by i. It computes a score s

(i)
l (x) repre-

sents l-dimension vector of x. Usually, this is achieved through
a fully connected layer as following,

s
(i)
l (x) = vT

i g(W
T
i x+ bi), (1)

where g(·) is a non-linear activation function and Tanh is chosen
here, Wi ∈ Rl×l, Vi ∈ Rl and bi ∈ R are parameters to learn.

The attentive pooling (AP) [3] is utilized for calculating the
weighted mean of frame-level feature vectors, which computes
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Figure 1: A schematic of the proposed deep embedding system architecture. For the frame-level stage, each DenseBlock is made up of 5
convolution layers (Conv2D), exponential linear units (ELU) and instance normalizations (IN). The tensor shape after each DenseBlock
is in the format: featureMaps × timeSteps × frequencyChannels. Each Conv2D and Conv2D+IN+ELU is specified in the format: ker-
nelSizeTime × kernelSizeFreq, (stridesTime, stridesFreq), (paddingsTime, paddingsFreq), featureMaps. Each DenseBlock(g) contains
five Conv2D+IN+ELU blocks with growth rate g. For the utterance-level stage, numbers denote the channel of output feature maps or
embedding dimensions in our implementation.

the importance of each frame [4, 5] using softmax as follows,

αt =
esd(ht)

!N
j=1 e

sd(hj)
, (2)

U =

N"

t=1

αtht. (3)

Notice that we have dropped the superscript i of s(i)l to em-
phasize a single-head attention function as used in [4, 5].

2.1.1. Bidirectional attentive pooling

To get more discriminative fixed-dimensional utterance-level
representation and capture long term sequence information, Cai
et al. [14] proposed an attention-based CNN-BLSTM frame-
work, which combine CNN-BLSTM model with a attentive
pooling layer together. Different from [14] directly connect-
ing the BLSTM to the attentive pooling layer, we employ the
attentive pooling to capture the bidirectional temporal informa-
tion output by the bidirectional recurrent neural network, and
then concatenate the bidirectional utterance-level features. The
proposed pooling method called bidirectional attentive pooling
(BAP), which can be expressed as:

−→
U = AttendPool(

−→
H ), (4)

←−
U = AttendPool(

←−
H ), (5)

where AttendPool(·) is the operation of the attentive pool-
ing,

−→
H ,

←−
H are the bidirectional outputs from the BGRU lay-

ers. Then the bidirectional utterance-level features
−→
U and

←−
U

are cross concatenated to form an utterance-level speaker em-
bedding as this following:

U = CrossCat(
−→
U ,

←−
U ). (6)

2.1.2. Multi-head bidirectional attentive pooling

We extend the BAP architecture with multi-head, called multi-
head bidirectional attentive pooling (MH-BAP), which applies
attentive pooling on sub-vectors of each directional frames.

Specifically, if a number of K heads are taken into account,
it first splits the encoded frame ht into K non-overlapping ho-
mogenous sub-vectors, h(1)

t , h(2)
t , ..., h(K)

t with h(i)
t ∈ Rd/K .

Then, the sequence of each directional sub-vectors h(i) =

[h(i)
1 , h(i)

2 , ..., h(i)
N ] is processed with its specific attentive pool-

ing, extracting speech characteristics from the temporal vector
sequence h(i) with index i ∈ {1, 2, ...,K} as this following:

α
(i)
t =

es
(i)
d

(h(i)t )

!N
j=1 e

s
(i)
d/K

(h(i)j )
, (7)

U (i) =
N"

t=1

α
(i)
t h(i)

t . (8)

Finally, the utterance-level speaker embedding U is formed
as a concatenation of the bidirectional sub-embeddings as:

U = CrossCat([
−→
U (1), ...,

−→
U (K)], [

←−
U (1), ...,

←−
U (K)]). (9)

2.1.3. Multi-resolution multi-head bidirectional attentive pool-
ing

As the speech characteristics are obtained through aggregation
with attentive weights, Wang et al. [15] proposed the multi-
resolution multi-head attention which increase or decrease the
resolution of the attentive wights with a temperature parameter.
We extend this idea to incorporate the MH-BAP architecture,
called multi-resolution multi-head bidirectional attentive pool-
ing (MRMH-BAP). The Eq.(7) is changed to be

α
(i)
t =

es
(i)
d

(h(i)t )/Ti

!N
j=1 e

s
(i)
d/K

(h(i)j )/Ti

, (10)

where Ti = max(1, ⌊ i−1
2

⌋ × 5), i = 1, 2, ...,K.

2.2. Loss function

The goal of the loss function is to define a task that matches the
deployment setup as closely as possible while allowing for ef-
ficient deep neural network training through back-propagation.
In general, there are two deep feature learning paradigms, learn-
ing with class-level labels and learning with pair-wise labels.



In our submissions, we explore different deep feature learn-
ing paradigms, compare the performance difference of different
loss functions.

Given a single sample x in the feature space, assumes that
there are K within-class similarity scores and L between-class
similarity scores associated with x. We denote these similar-
ity scores as {sip}(i = 1, 2, ...,K) and {sjn}(j = 1, 2, ..., L),
respectively.

2.2.1. Additive margin softmax loss

Given class-level labels, we use additive margin softmax loss
(AM-Softmax), proposed in [16], as the loss function. We cal-
culate similarity scores between x and weights vector wi(i =
1, 2, ...N) (N is the number of training classes) in the clas-
sification layer. Specifically, we get (N − 1) between-class
similarity scores by: sjn = wT

j x/(‖wj‖ ‖x‖)(wj is the j-
th non-target weight vector). Additionally, we get a single
within-class similarity core (with the superscript omitted) sp =
wT

y x/(‖wy‖ ‖x‖). With these prerequisites, the AM-Softmax
loss as this following:

Lam = log[1 +

N−1"

j=1

exp(γ(sjn +m))exp(−γsp)]

= −log
exp(γ(sp −m))

exp(γ(sp −m)) +
!N−1

j=1 exp(γsjn)
,

(11)

in which γ is a scale factor and m is a margin for better similar-
ity separation.

2.2.2. Triplet loss

Given pair-wise labels, we use Triplet loss, proposed in [10],
as the loss function. We calculate the similarity scores be-
tween x and the other features in the mini-batch. Specifically,
sjn = (xj

n)
T x/(

##xj
n

## ‖x‖) (xj
n is the j-th sample in the neg-

ative sample set N ) and sip = (xi
p)

T x/(
##xi

p

## ‖x‖) (xi
p is the

i-th sample in the positive sample in the positive sample set P).
Correspondingly, K = |P|, L = |N |. The triplet loss as this
following:

Ltri = [sjn − sip +m]+, (12)
where the operator [x]+ = max(x, 0) represents triplet selec-
tion.

2.2.3. Circle loss

Given class-level labels and pair-wise labels, a unified for-
mula for two elemental deep feature learning paradigms pro-
posed in [17], called Circle loss, as the loss function. To min-
imize each sjn as well as to maximize sip, (∀i ∈ 1, 2, ...,K,
∀j ∈ 1, 2, ..., L), the corresponding loss function is:

Lcir = log[1 +

K"

i=1

L"

j=1

exp(γ(sjn − sip +m))]

= log[1 +

L"

j=1

exp(γ(sjn +m))

K"

i=1

exp(γ(−sip))].

(13)

3. Training
3.1. Data preparation

FFSVC2020 has three tasks in a research competition under
well-defined conditions: 1) far-field TD-SV from a single mi-

crophone array; 2) far-field TI-SV from a single microphone
array; 3) far-field TD-SV from distributed microphone arrays.
The first 30 utterances are of fixed content: ‘ni hao mi ya’ in
Mandarin Chinese for TD-SV tasks. The remaining utterances
are text-independent. For all of our submissions, we train our
DNN on the first 30 utterances of FFSVC2020 training dataset,
and SLR85 HI-MIA dataset from openslr.org. In total,
training data sets have nearly 1,139,671 utterances and the total
duration approximately 950 hours with 374 speakers, there are
120 speakers from the FFSVC2020 dataset, and 254 speakers
from the HI-MIA dataset.

All audio clips are first downsampled to 16kHz. Mean
normalization is applied using a moving window of 3 seconds
speech segment. For each segment, 40-dimensional Mel-filter
bank features are generated with a 20-ms window length and
10-ms offset.

3.2. Online Data Augmentation

We use the online data augmentation strategy in [18] to make
the speaker embeddings more robust. The public MUSAN [19]
and RIR NOISES [20] are used as interfering noises. For each
audio segment, we randomly select a noise clip and mix it with
the audio segment at a signal-to-noise ratio (SNR) level. The
SNR is uniformly distributed between 0 and 20 dB.

3.3. DNN training with PyTorch

All of the submission models are trained using PyTorch [21] and
using the Adam optimizer with a batch size of 128. After some
exploration, we observe that 100K training steps are sufficient
to train the networks. We also evaluate different learning rate
schedulers. The selected strategy uses a starting learning rate
of 0.1, keeps it constant for 30K steps, and then it applies an
exponential decay every 10K steps with a rate of 1/2. The period
of constant learning rate was important for the networks trained
with margin penalty.

4. Scoring
We used both Probabilistic Linear Discriminative Analysis
(PLDA) [23, 24] and cosine for scoring. In the PLDA scor-
ing, the PLDA of the system is trained using embeddings of
the whole training set. The post-processing of the speaker em-
beddings are extracted from the embedding layers, length nor-
malization, centering, whitening and LDA transformation for
feature dimensionality reduction has been applied to the em-
beddings in sequence, finally followed by the PLDA training.
Specifically, the PLDA scoring process is based on the Kaldi
toolkit [12]. In the cosine scoring, we simply evaluate the pair-
wise comparisons using the cosine distance. Recordings from
the iPhone at 25cm distance are selected for enrollment. For
testing, one microphone array is used in Task 1; 2-4 microphone
arrays are randomly selected in Task 3. Different channels from
the microphone array(s) are equally weighted at the embedding
level before scoring.

5. Results
We list the performance of systems on FFSVC2020 in Table
1. The primary measure metric is the minimum detection cost
function (minDCF) with Ptarget = 0.01. It should be mentioned
that TDNN is used as the feature extractor in system D. The
structure of this extractor is the same as that in the x-vector sys-
tem [25], and ResNet of the system E is a reimplementation



Table 1: Performance of our systems on the FFSVC2020 development set, and the official evaluation. Boldface values are the best
results each in PLDA backend and cosine distance. DenseNet system as shown in Figure 1. AP, BAP, MH-BAP and MRMH-BAP
pooling methods are described in Section 2.1.

System Loss function Pooling Scoring

Development Set Evaluation Set

Task 1 Task 3 Task 1 Task3

minDCF EER(%) minDCF EER(%) minDCF minDCF

A1(DenseNet) AM-Softmax
(m=0.35, γ=10) AP

Cosine 0.54 4.73 0.51 4.69 - -
PLDA 0.52 4.81 0.49 4.57 - -

A2(DenseNet) AM-Softmax
(m=0.35, γ=10) BAP

Cosine 0.48 4.60 0.46 4.27 - -
PLDA 0.49 4.57 0.45 4.12 0.57 0.53

A3(DenseNet) AM-Softmax
(m=0.35, γ=10) MH-BAP

Cosine 0.47 4.59 0.43 4.23 - -
PLDA 0.45 4.43 0.42 4.01 - -

A4(DenseNet) AM-Softmax
(m=0.35, γ=10) MRMH-BAP

Cosine 0.43 4.06 0.42 3.97 - -
PLDA 0.41 3.93 0.39 3.85 0.53 0.48

B1(DenseNet) TripletLoss
(m=0.25) MH-BAP

Cosine 0.53 4.65 0.50 4.45 - -
PLDA 0.51 4.70 0.47 4.36 - -

B2(DenseNet) TripletLoss
(m=0.25) MRMH-BAP

Cosine 0.49 4.52 0.48 4.29 - -
PLDA 0.46 4.48 0.44 4.34 0.59 0.58

C1(DenseNet) CircleLoss
(m=0.35, γ=256) MH-BAP

Cosine 0.37 3.39 0.38 3.31 - -
PLDA 0.35 3.47 0.36 3.26 - -

C2(DenseNet) CircleLoss
(m=0.35, γ=256) MRMH-BAP

Cosine 0.36 3.29 0.37 3.21 - -
PLDA 0.34 3.16 0.35 3.09 0.52 0.47

D(TDNN) CircleLoss
(m=0.35, γ=256) MRMH-BAP

Cosine 0.45 3.86 0.43 3.61 - -
PLDA 0.42 3.81 0.40 3.58 0.56 0.52

E(ResNet) CircleLoss
(m=0.35, γ=256) MRMH-BAP

Cosine 0.38 3.43 0.38 3.37 - -
PLDA 0.37 3.51 0.41 3.40 0.54 0.50

FFSVC2020
Baseline[22] - - - 0.57 6.01 0.59 5.42 0.62 0.66

Fusion(A4+B2+C2+D+E) - - PLDA 0.32 3.05 0.33 2.97 0.49 0.42

of the feature extractor of the official benchmark system [22].
System C2 is our proposed best single system. Comparing sys-
tems C2, D and E, we observe that DenseNet outperforms the
TDNN and ResNet. Comparing with the FFSVC2020 baseline
implementation results, our proposed method is significantly
outperform the FFSVC2020 baseline system and get the best
performance in PLDA scoring with 17.74%, 28.78% minDCFs
relative reductions on the evaluation set of Task 1 and Task 3
respectively.

In Table 1, under same loss function condition, we can see
the effect of different pooling methods. Comparing the systems
A1, A2, A3 and A4 (B1 and B2, or C1 and C2), we observe
that MRMH-BAP performs best. That means that using mul-
tiple heads and having multiple resolutions on attention heads
with different temperatures lead to improved certainty of atten-
tive weights in the pooling layer. In particular, the bidirectional
recurrent layer in the pooling method consists of two BGRU
layers with 128 cells in each direction and set the attention head
K = 4.

From Table 1, we can see clearly the loss function is im-
portant for deep feature learning. Compare with A4, B2 and
C2, Circle loss marginally outperforms the AM-Softmax and
Triplet loss.

The systems noted in bold face in Table 1 are combined
by averaging their scores and submitted as our final entry for
the Task 1 and Task 3. We have also submitted these individ-
ual systems to the leaderboard to assess their performance on

the evaluation set. Overall, we observe that there is some per-
formance gap between the development and evaluation sets but
the relative ranking of systems is consistent. Finally, we note
that combining a set of diverse systems (averaging their scores)
outperforms a single network (i.e., C2 vs A4+B2+C2+D+E).

6. Conclusions
In this paper, we provide an overview of IMU&Elevoc systems
submitted to FFSVC2020. The details about our systems, in-
cluding the usage of data sets, various loss functions, pooling
methods and fusion strategies, are described. What we learn
from FFSVC2020 include: online data augmentation is help-
ful; densely concatenating the outputs of convolutional layers
improves efficiency; adding bidirectional recurrent layers to the
attentive pooling layer helps capture long temporal context in-
formation; using multiple heads for attentive pooling with an
additional temperature hyperparameter for each head, signifi-
cantly improves the performance; circle loss benefits deep fea-
ture learning and helps extract more discriminative speaker em-
beddings; and finally, fusion almost always helps.
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