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Abstract
In this paper, we describe the system Team NSYSU+CHT

has implemented for the 2020 Far-field Speaker Verification
Challenge (FFSVC 2020). The single systems are embedding-
based neural speaker recognition systems. The front-end feature
extractor is a neural network architecture based on TDNN and
CNN modules, called TDResNet, which combines the advan-
tages of both TDNN and CNN. In the pooling layer, we exper-
imented with different methods such as statistics pooling and
GhostVLAD. The back-end is a PLDA scorer. Here we evalu-
ate PLDA training/adaptation and use it for system fusion. We
participate in the text-dependent (Task 1) and text-independent
(Task 2) speaker verification tasks on single microphone array
data of FFSVC 2020. The best performance we have achieved
with the proposed methods are minDCF 0.7703, EER 9.94% on
Task 1, and minDCF 0.8762, EER 10.31% on Task 2.

1. Introduction
The automatic speaker verification (ASV) system has improved
significantly with the advancement of deep learning technology.
The relevant competitions held every year, whether it is NIST
Speaker Recognition Evaluation (SRE)[1], or ASVspoof[2]
which is to prevent spoofing attacks. These competitions have
made the ASV system develop rapidly.

At present, the most widely used ASV system architec-
ture is embedding-based which is a combination of front-end
feature extractor and back-end scorer. The front-end extracts
the raw input feature into a high-level representation at the
frame-level layer, and integrates it into an utterance level rep-
resentation through the pooling layer, then extracts embedding
through the fully connected layer and classifies with classifica-
tion heads. The front-end architecture has evolved from the tra-
ditional DNN / i-vector[3] to the time-delayed neural network
(TDNN) / x-vector[4] and its extended version (E-TDNN)[5]
that outperform in the speaker verification competition in recent
years ; the convolutional neural network originally established
based on image classification is considered to achieve good
performance in the speaker recognition task, such as Residual
neural network (ResNet)[6, 7, 8]. On the other hand, many
studies focus on improving the pooling layer and loss func-
tion. In addition to the statistic pooling that is most commonly
used in TDNN, self-attentive pooling[9, 10], NetVLAD[11] can
make the system aggregating frame- level information better;
the loss function is learned from the face recognition and tried
many softmax varieties: L-softmax[12], A-softmax[13], AM-
softmax[14], AAM-softmax[15]. In addition to the simple co-
sine similarity of back-end scorer, probabilistic linear discrim-
inant analysis(PLDA)[16] has become one of the most popular
methods.

In recent years, with the popularization of IoT devices
and smart home products, the processing of short duration
commands, and the usage of far-field scenario have become
new challenges for the ASV system. The mismatch of
recording devices has deepened the difficulty of verification.
FFSVC2020[17] is held , which is used to promote the research
of ASV system under this scenarios.

Therefore, this paper describe our implementation for
FFSVC2020 in Task 1: Far-Field Text-Dependent Speaker Ver-
ification from single microphone array and Task 2: Far-Field
Text-Independent Speaker Verification From single microphone
array takes different solutions. We built our front-end em-
bedding extractor with TDNN-based E-TDNN and CNN-based
ResNet. Acoustic features use FBank with pitch. And then
we also modified the ResNet architecture and combined it with
E-TDNN to become a new network architecture called TDRes-
Net. PLDA is our back-end scorer to evalute the performance of
model architectures on each task separately. In addition, we also
made changes for the pooling layer replacing the original statis-
tic pooling with NetVLAD improvement: GhostVLAD [18].
More implementation details will be explained in subsequent
sections.

2. Network Architecture
2.1. Frame Level Layers

In this section, we have adopted three different architectures.
One is the extended version of the time delayed neural network
(TDNN) called E-TDNN, and the other is the Resnet architec-
ture of the convolutional neural network. Also, we found that
both are complimentary, so we combined them into a new ar-
chitecture called TDResnet.

2.1.1. TDNN-based

We establish the E-TDNN architecture as our baseline by refer-
ring to[5]. The architecture uses 10 layers as the frame-level
feature extractor, and the concept of dilation is used in the 3rd,
5th, and 7th layers, which is the essence of TDNN. It used to
extend the frame-level receptive fields. The dilation rates are
2, 3, and 4, respectively, so that 23 receptive fields can be fi-
nally perceived. Then, the frame-level output is passed through
the statistic pooling and two fully connected layers. The frame-
level information is integrated into segment-level information.
Finally, the output is classified by classification head. Speaker
embedding is taken from the first fully connected layers of the
segment-level layer. Each layer is followed by Relu and batch
normalization.



2.1.2. CNN-based

According to the research of [6, 7, 8], it shows that the ar-
chitecture of Resnet has great feature extraction ability in the
far-field environment with noisy and reverberate. Thus, we
adopted Resnet as our CNN-based architecture which is in-
spired by the thin-ResNet architecture[6]. ResNet implement
with fewer parameters, and then the output of the frame-level
is also passed through the statistic pooling. Different from E-
TDNN, the segment-level layer used only one fully connected
layer. Speaker embedding is extracted from this layer. Each
layer is also followed by Relu and batch normalization. Each
residual block is connected with residual connect. The final ar-
chitecture is shown in Table 1.

Table 1: Network architecture of ResNet

Module Input 43 FBank-pitch(43× T ) size

ConvModule

Conv1d, 1× 43, 64 64 1 , 48
3 , 48
1 , 96

× 2 96 1 , 64
3 , 64
1 , 128

× 3 128 1 , 128
3 , 128
1 , 256

× 3 256 1 , 256
3 , 256
1 , 512

× 3 512

Statistic Pooling Full-Seq 2× 512
Segment FC,512 512

AM-Softmax Speakers

2.1.3. Combination Of TDNN And CNN

The difference between E-TDNN and ResNet is that the first
few layers of E-TDNN are composed of convolution layers with
dilation. Dilation is used to obtain a wide range of frame-level
layer information, followed by several layers of the same ker-
nel size convolutional layer to extract and integrate frame-level
layer information. Although the layers of ResNet is deeper than
E-TDNN, the receptive fields of the frame-level layer is not as
wide as E-TDNN. Therefore, we believe that the two are com-
plementary. In E-TDNN, if the ResNet block mechanism is
used to replace the convolution layers after the dilation layer of
the frame-level layers, it could become deeper and bigger, mak-
ing the feature extraction ability better. According to this idea,
mixed architecture was designed. The architecture is shown in
the Table2. The first five layers use the original E-TDNN di-
lation design, the dilation rate are 2, 3, 4, 5 respectively, and
the remaining layers use 3 residual blocks of different channel
sizes respectively. There are 45 receptive fields can be finally
perceived. The architecture retains the ability of E-TDNN to
obtain the wide range of frame-level layer information and the
ability of ResNet to extract features well.

In this paper[19], the authors proposed an architecture
TDResBlock similar to our idea, but they chose to add TDNN
module in the residual block. The difference is that we ob-
tained fixed receptive fields from the first few layers with di-
lation. Then we use residual blocks for feature extraction and
integration. But receptive fields is increasing with the number

of residual blocks in their method. Every residual block has
different receptive fields, so they need to integrate information
from different receptive fields. Also, the number of dilations
they use can eventually reach 11. If the number of frames is
not long enough, using excessive dilations will make the result
worse due to the zero padding. So, we only use 5.

Table 2: Network architecture of TDResNet

Module Input 43 FBank-pitch(43× T ) size

TDNN Module

[t− 2, t+ 2] 512
{t− 2, t, t+ 2} 512
{t− 3, t, t+ 3} 512
{t− 4, t, t+ 4} 512
{t− 5, t, t+ 5} 512

ResNet Module

 1 , 512
3 , 512
1 , 1024

× 3 1024 1 , 1024
3 , 1024
1 , 2048

× 3 2048

Statistic Pooling Full-Seq 2× 2048
Segment FC,512 512

AM-Softmax Speakers

2.2. Pooling

In addition to the original statistics pooling by calculating mean
and standard deviation, we use the GhostVLAD[7], which is
improved from NetVLAD. NetVLAD takes the output of frame-
level layers as input and then generates a vector V of sizeK×D
by the following equation:

V (j, k) =

N∑
i=1

ea
T
k xi+bk∑K

k′=1 e
aT
k′xi+bk′

(xi(j)− ck(j)) (1)

K represents the total number of clusters, which is a hyper-
parameter. D represents the size of each cluster, which is the
same as the number of frame-level layers output channels. ak,
bk, ck are parameters trained by the network. The first half of
the formula is softmax, which is the probability of xi belong to
the cluster k, the second half is to calculate the residual between
xi and the center of the cluster k. The softmax value is used as
the weight of the residual, and then sums the results. Finally,
the aggregated residuals of each cluster are concatenated into
the final output vector V . The improvement of GhostVLAD is
that it adds Ghost clusters G to the original K clusters for noise
clustering. Original output will become (K + G) ×D, but fi-
nally exclude ghost clusters and using onlyK×D. The original
paper sets K = 8 and G = 2.

2.3. Loss Function

In recent years, the speaker recognition system based on Am-
softmax loss function training has greatly improved compared
to the traditional softmax[20], so we prefer to use Am-softmax
rather than the original softmax. This loss introduces the con-
cept of the angular interval into softmax and proposes a new
margin. AM-softmax loss function is defined as follows:

L = − 1

n

n∑
i=1

log
es·(cos θyi−m)

es·(cos θyi−m) +
∑c
j=1,j 6=yi e

s·(cos θj)
(2)



where cos θyi represents the angle cosine of the feature vec-
tor and weight vector of the i sample, m represents the angular
margin, and s is scaling factor that to scale the cosine value, m
and s both are hyper-parameters, the goal of this loss is to max-
imize cos θyi − m to minimize the angle between the feature
vector and the weight vector. We set s = 30, m = 0.2.

2.4. Back-end Scoring

2.4.1. Gaussian PLDA

The back-end scoring system is based on Gaussian PLDA, we
first do mean normalization for the extracted speaker embed-
ding to reduce the range of embedding variations, and then re-
duce the embedding dimension to 250 through LDA. We use
the dimensionality reduction of embedding to train PLDA, and
the adjustment of PLDA adaptation, and finally calculate the
log-likehood score of embedding.

2.4.2. Score Fusion

Each system has a different embedding extractor architecture
and scoring of PLDA or PLDA adaptation. To get the best sys-
tem performance, we combined the scores calculated by multi-
ple systems, we split a model into two subsystems: PLDA and
PLDA adaptation subsystems, and uses BOSARIS toolkit[21]
to calibrate the weights between different systems, as shown in
Figure 1. Our calibration data set uses the FFSVC2020 devel-
opment set.

Figure 1: Schematic illustration of fusion strategy.

2.5. Model Fine-tuning

We use a lot of text-independent data to train our model to fit
the conditions of Task2, but if directly applied to the Task1, the
results will be very poor. The straightforward solution is to use
text-dependent data retraining the embedding extractor or using
the model which is trained by text-independent data as a pre-
trained model to train in transfer learning method, but these two
methods are bound to take a lot of extra time, so our approach
is to choose to replace the PLDA training/adaptation data with
text-dependent data. It not only save time, but also achieve a
certain effect.

3. Experimental Setup
3.1. Training Data

Besides use the FFSVC 2020 training dataset provided by the
challenge, and SLR85 (HI-MIA) mentioned in the evaluation

plan. To meet the test scenario of this challenge, we have ad-
ditionally selected Mandarin Chinese recordings data related to
smart home. There are SLR33 (AISHELL), SLR38 (FreeST
Chinese), and SLR68 (MAGICDATA). At the same time, to in-
crease the diversity of speakers, we also used the SLR49 (Vox-
celeb) and SLR12 (LibriSpeech) data sets that are often used in
other challenge. Therefore, a total of 7 different data sets were
used.

3.2. Data Augmentation

The training data uses data augmentation, which has been
used to enhance the robustness of the deep speaker embedding
model, and the paper[22] mentioned that there is a mismatch
between training data and test data in a far-field environment.
In order to simulate the far-field environment, we use KALDI
toolkit[23] to augment the training data with reverberation for
several larger data sets, and use the data after the augmentation
to train the network. Table3 is shown how we use data.

3.3. Acoustic Feature

Our acoustic features use Kaldi 40-dim FBank with 3-dim pitch,
and the sample rate is 16kHz, the frame window is 25-ms, and
the frame shift is 10-ms. Also, we use energy-based voice ac-
tivity detection(VAD) to remove non-human voice fragments.
Many experiments have shown that VAD has a great impact on
the results, and then the cepstrum mean and variance normaliza-
tion (CMVN) for features are used to reduce the effect of outlier
features and imporve training efficiency.

3.4. Devlopment And Evaluation Data

We use the FFSVC2020 development data and evaluation data
provided by the challenge. All experiments are tested by devel-
opment data, and the results of the development set are used to
estimate the performance on the evaluation set. So, the devel-
opment set does not include in embedding or PLDA training, it
only used to evaluate the models .

4. Result
Totally, we tested 5 different models on the development set,
namely ETDNN, ResNet, TDResNet, TDResNet-G, and Fusion
model. Only TDResNet, TDResNet-G, and Fusion model were
tested on evaluation data and uploaded for the results. We used
the Fusion model as the Primary System1, and this is also our
best system in this challenge. The others are as Single System1
and Single System2, of which Single System2 performs better.
All results are shown in Table 4.

4.1. Single System

The architecture of Single System1 is the same as described in
Section 2.1.3. It is composed of 5 layers of TDNN layer and 6
residual blocks. The pooling uses statistics pooling. The loss

Table 3: Data usage in the training process

Dataset Augmentation Embedding Training PLDA Training/Adaptation
LibriSpeech

√ √

AISHELL
√ √

FreeST
√

VoxCeleb
√ √

MAGICDATA
√

HI-MIA
√ √

FFSVC2020 Training
√ √ √



Table 4: Minimum DCF and EER of the FFSVC2020 development set and evaluation set

Development Set Evaluation Set

Task 1 Task 2 Task 1 Task 2

PLDA PLDA Adapt PLDA PLDA Adapt
ID Model minDCF EER minDCF EER minDCF EER minDCF EER minDCF EER minDCF EER

1 E-TDNN 0.9286 11.94% 0.9231 11.82% 0.9503 12.86% 0.9479 12.43% - - - -
2 ResNet 0.8755 11.21% 0.8851 10.41% 0.9131 12.47% 0.9191 12.02% - - - -
3 TDResNet 0.8694 11.02% 0.8740 10.23% 0.9220 11.6% 0.93 10.88% 0.8566 11.45% 0.9132 11.36%
4 TDResNet-G 0.8374 11.59% 0.8295 10.33% 0.8650 12.11% 0.87 11.39% 0.8197 12.19% 0.8994 12.11%
5 Fusion(2+3+4) - - - - - - - - 0.7703 9.94% 0.8762 10.31%

function of the model is AM-softmax with m = 0.2 and s = 30.
The training data of embedding extractor is used the 7 data sets
mentioned in section 3.1, and PLDA / PLDA adaptation uses
different data according to different tasks. In Task1, we use
FFSVC2020 training data which ID is from one to thirty and
HI-MIA, both recording content are ‘ni hao, mi ya’. The pur-
pose is to be close to the text-dependent condition, while Task2
uses all of FFSVC2020 training data. Regarding the training hy-
perparameters, the batch size is 32, the total number of frames
per iteration is 7 billion, the initial learning rate is 0.001, and
the final decrease to 0.0001. The model is trained for a total of
6 epochs by NVidia GeForce GTX 1080 Ti GPU.

Single System2 takes the same architecture as single sys-

(a) TDResNet

(b) TDResNet-G

Figure 2: The t-SNE visualization of the embeddings extracted
from the different model embedding layer on FFSVC2020 de-
velopment set.

tem1, the only difference is that the pooling layer is replaced
from the original statistics pooling to GhostVLAD. The train-
ing data and hyperparameters have not changed.

We also use the t-distributed stochastic neighbor embed-
ding (t-SNE)[24] to visualize the high-dimensional embedding
of Single System1 and Single System2 respectively, to evalu-
ate the embedding learned from different pooling layers. The
results are shown in Figure 2, we can find out that the embed-
ding extracted by GhostVLAD is divided better than statistics
pooling, especially in the upper half of the figure.

4.2. Primary System

Use the system after BOSARIS fusion as the Primary System1.
We select Model 2,3,4 as front-end model, and each model cor-
responds to back-end PLDA and PLDA adaptation, so the fu-
sion result is generated by 6 different subsystems. This fusion
system is the best of all our systems, with minDCF 0.7703, EER
9.94% ranking 14 on Task1, and minDCF 0.8762, EER 10.31%
ranking 11th on Task2.

5. Conclusions
In this study, we participated in FFSVC2020 and implemented
front-end systems with TDNN-based and CNN-based. Also, we
combined the advantages of both to design a new system called
TDResNet. Back-end implements PLDA training/adaptation
and used it for system fusion. Each system was evaluated on
the development set and evaluation set of FFSVC2020. After
evaluation, TDResNet outperformed the original two systems.
Besides, we tested GhostVLAD and compared it with the orig-
inal statistics pooling. We find out that GhostVLAD is better
than statistics pooling. In the end, our best system can reach
minDCF 0.7703, EER 9.94% on Task1, and minDCF 0.8762,
EER 10.31% on Task2.
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