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Abstract
This paper presents the development of ZXIC speaker veri-
fication system submitted to the task 1 of Interspeech 2022
Far-Field Speaker Verification Challenge (FFSVC2022). Deep
neural network based discriminative embeddings, such as x-
vectors, have been shown to perform well in speaker verifica-
tion tasks. In far-field speaker verification system, mismatch
between training and testing data and mismatch between en-
rollment and authentication utterances impact the system per-
formance a lot. To alleviate this mismatch and improve the
system performance, in this paper we propose a novel multi-
reader domain adaption learning framework based on asymmet-
ric metric learning. In this challenge, we also explore advanced
neural network based embedding extractor structures including
ECAPA-TDNN and ResNet-SE. A number of experiments on
these architectures show that our proposed method is effective
and improves the systems performance a lot. The final submit-
ted systems are the fusion of several models. In FFSVC2022,
our best system achieves a minimum of the detection cost func-
tion (minDCF) of 0.511and an equal error rate (EER) of 4.409%
on the evaluation set.
Index Terms: speech verification, deep learning, domain adap-
tion, metric learning

1. Introduction
Speaker verification is the process of verifying a person from
characteristic of voices. Recently, due to the development of
deep learning technology and the availability of large-scale
speech datasets, automatic speaker verification (ASV) has be-
come one of the most promising biometric authentication meth-
ods in smart speakers and smartphones. Pioneering works on
speaker verification based on embedding extracted by deep neu-
ral network can transform speaker utterances of various lengths
into fixed dimensional embedding vectors for back-end scoring
and verification [1, 2]. These works have achieved significantly
superior results on speaker verification benchmark datasets as
well as close-talk scenarios.

However, when ASV systems are deployed in far-field and
noisy scenarios, their performance drops obviously. One key
factor is the domain mismatch caused by the statistical differ-
ence between the training and evaluation datasets. Another crit-
ical factor of performance degradation is the mismatch between
enrollment and test utterances. It is common for users to enroll
their utterances via close-talking devices in quiet conditions but
authenticate in the complex far-field environments where unex-
pected cross-domain problems, such as cross-distances, cross-
channels, cross-devices and cross-time problems will damage
the system’s performance a lot. To compensate these cross-
domain mismatches, many strategies have been proposed. One
approach for x-vector systems with probabilistic linear discrim-

inative analysis (PLDA) back-end [3] is to apply domain adap-
tion to back-end classifiers. After training of the x-vector net-
work, a transformation of extracted embeddings is learned with
the objective of reducing domain mismatch [4]. In [5], domain
adaptation is performed by aligning the covariance of labeled
out-of-domain and unlabeled in-domain data. A second ap-
proach is to design and train domain invariant embeddings. In
[6], invariant representation learning method is introduced to
improve the system robustness in reverberant and noisy con-
ditions. Alternatively, domain adaptation loss functions have
been proved that they can reduce the mismatch effectively [7, 8].
Study from [8] has shown that domain adversarial training with
a gradient reversal layer to learn domain-invariant features can
bring 0.8% absolute EER reduction in FFSVC2020 challenge
[9]. In addition, metric learning to learn effective representa-
tions that have small intra-class distance and large inter-class
distance is another commonly used approach to reduce domain
mismatch which has be investigated in [10, 11, 12].

To promote the development of speaker verification on real
application scenarios, Far-Field Speaker Verification Challenge
(FFSVC) was first organized in 2020 [9]. In 2022, the spe-
cific objective for FFSVC2022 focus on single-channel far-field
speaker verification scenarios under noisy conditions [13]. In
this paper, we present our submitted system to the fully super-
vised far-field speaker verification task (task 1) of FFSVC2022.
Inspired by previous work, we propose a novel multi-reader do-
main adaption learning framework based on asymmetric met-
ric learning for deep learning based x-vector embeddings. We
builds two asymmetric data streams, which interlace to each
other can mine considerably richer relationship compared with
conventional one stream metric learning approaches. By ex-
tracting domain invariant embeddings, the domain adaption
learning framework can not only alleviate the mismatch be-
tween training and testing data but also the mismatch between
enrollment and authentication utterances.

In this work, our main contribution is that we propose
a novel multi-reader domain adaption learning. In addition,
a complete description of the system components, including
front-end, advanced neural network based embedding extrac-
tor structures along with their configurations, and back-end are
introduced. At last, we conduct a number of experiments to
prove the effectiveness of proposed deep learning framework
on different architectures.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the system components of our system includ-
ing front-end, feature extraction, model extractors and back-end
strategies. Section 3 introduces the proposed novel multi-reader
domain adaption learning method. Experiments are presented
in Section 4, followed by results and conclusions.



Table 1: ResNet34-SE architecture configuration. K denotes
kernel size. C denotes channels.

Layer Name Configurations

Conv1
[
K = 3× 3, C = 32

]
× 1

Res-SE-Block 1

K = 3× 3, C = 32
K = 3× 3, C = 32

SE −Block

× 3

Res-SE-Block 2

K = 3× 3, C = 64
K = 3× 3, C = 64

SE −Block

× 4

Res-SE-Block 3

K = 3× 3, C = 128
K = 3× 3, C = 128

SE −Block

× 6

Res-SE-Block 4

K = 3× 3, C = 256
K = 3× 3, C = 256

SE −Block

× 3

Statistics pooling ASP
Linear 5120× 256

2. System components
2.1. Feature extraction

All raw input signals are resampled to 16kHz, normalized and
pre-emphasized before feature extraction. During training, we
randomly extract a fixed length 2-seconds segment from each
utterance. While during testing, 5 equally-spaced 2-seconds
segments with the entire utterance are selected for feature ex-
traction. 80 dimensional logarithm Mel filter bank energies are
generated with a hamming window of 25ms width and 10ms
step. All features are cepstral mean normalized without extra
voice activity detection (VAD).

2.2. Speaker embedding extractors

In total, we train two advanced neural network architectures to
extract speaker embedding from acoustic features. One is vari-
ant of x-vector [2] and the other is variant of ResNet [14]. We
introduce them in the following.

2.2.1. ResNet-SE

Residual networks [14], which are widely used in image recog-
nition have recently been implemented in speaker recognition
system [15]. Squeeze-and-excitation residual network (ResNet-
SE) is a variant of ResNet that employs squeeze-and-excitation
blocks to enable the network to perform dynamic channel-wise
feature recalibration [16, 17]. In this work, we implement
ResNet-SE with 34 layers to extract speaker embeddings. As
shown in Table 1 which describes the ResNet34-SE architec-
ture, 256 dimensional speaker embedding vectors are extracted.
The frame layers are followed by an attentive statistics pooling
layer (ASP) [18] that calculates the mean and standard devia-
tions of the final frame-level features to aggregate frame-level
features into utterance-level features.

2.2.2. ECAPA-TDNN

ECAPA-TDNN is one of the state-of-the-art speaker verifica-
tion models [19]. As a enhancement of original time delay neu-
ral network (TDNN) architecture, ECAPA-TDNN model intro-

Table 2: ECAPA-TDNN1024 architecture configuration. K de-
notes kernel size. C denotes channels.

Layer Name Configurations

Conv1
[
K = 5, C = 1024

]
SE-Res2Block 1


K = 1, C = 1024[

K = 3, C = 128
]
× 8

K = 1, C = 1024
SE −Block



SE-Res2Block 2


K = 1, C = 1024[

K = 3, C = 128
]
× 8

K = 1, C = 1024
SE −Block



SE-Res2Block 3


K = 1, C = 1024[

K = 3, C = 128
]
× 8

K = 1, C = 1024
SE −Block


Conv2

[
K = 1, C = 1536

]
Statistics pooling ASP
Linear 3072× 192

duces additional skip connections to propagate and aggregate
channels throughout the system. Table 2 shows the model ar-
chitecture we have used in this challenge. The number of SE-
Res2Blocks is set to 3 with dilation values 2, 3 and 4. The
number of channels is set to 1024. Attention statistic pooling
(ASP) is used and 192 dimensional speaker embedding vectors
are extracted.

2.3. Back-end

In this work, we use L2-normalization to converts extracted em-
bedding vectors to unit vectors. We want to force learned em-
beddings to lie on a sphere and make the system focus on the
angle. According experiment results [6, 20] and previous expe-
rience, PLDA will not enhance the system performance if the
model is trained with margin-based loss functions. So in our
work, we use cosine similarity to calculate back-end score.

2.3.1. Score Integration

For each development and evaluation trial, embedding vectors
(e, t) of the entire enroll and test utterances are extracted and
whole utterance similarity score is computed. We also extract
N embedding vectors (ei, tj , 1 ⩽ i, j ⩽ N ) from N equally-
spaced segments in enroll and test utterances, compute the score
matrix and get the average as matrix average score. As shown
in (1), the final score is the sum of whole utterance similarity
score and matrix average score.

score = cos(e, t) +
1

N2
×

N∑
i=1

N∑
j=1

cos(ei, tj) (1)

3. Multi-Reader domain adaption learning
In this section, we propose a novel multi-reader domain adap-
tion learning framework based on asymmetric metric learning
to solve system degradation problem caused by mismatch be-
tween enrollment and authentication utterances. For the follow-
ing proposed learning method, the weights are initialized with
the weights of pre-train models which are trained with Voxceleb



Figure 1: Domain adaption learning framework builds two
asymmetric data streams of enrollment and test utterances in
each training iteration to train a single network. Domain mis-
match loss functions are proposed to align the embeddings.

dataset [21, 22].

3.1. Domain mismatch loss

Additive margin variant of Softmax loss function, AM-Softmax
[23, 24], uses a cosine margin penalty to the target to in-
crease inter-class variance and has achieved good performance
in many tasks [11, 15]. However, it is sensitive to the pa-
rameters of scale and margin. Metric learning loss functions
are alternatives to classification loss functions to learn embed-
dings directly with small intra-class and large inter-class dis-
tance [25, 26]. Inspired by prototypical loss function [27], we
propose a domain mismatch loss function.

As shown in Figure1, in fine-tuning stage, we generate a
batch that contains N speakers, and M close-talking enrollment
utterances and M far-field test utterances from each speaker.
We feed these utterances into our systems described in Sec-
tion 2. During training, in each batch, the extracted normal-
ized enrollment speaker embedding vectors are denoted as xi,j

and test speaker embedding vectors are denoted as yi,j where
1 ⩽ i ⩽ N and 1 ⩽ j ⩽ M . The center of enroll-
ment embeddings {x1,1, x1,2, · · ·x1,M , · · ·xN,M , } is denoted
as {xc1, xc2, · · ·xck, · · ·xcN , } where xck is defined as

xck =
1

M

M∑
j=1

xk,j (2)

The similarity matrix between each enrollment utterance em-
beddings and test utterance embeddings is defined as

si,j,k = cos(yi,j , xck) + b (3)

where b is a learnable bias, 1 ⩽ i, k ⩽ N and 1 ⩽ j ⩽ M .
As shown in Figure 2, for a well trained system, the embedding
vectors extracted from enrollment speech and test speech should
have similar distribution in the embedding space. Therefore, the
similarity should be large in gray areas and small in white ar-
eas. We define the target labels for similarity matrix are positive

Figure 2: Similarity matrix of domain mismatch loss. The batch
contains N = 3 speakers and each speaker has M = 3 close-
talking and far-field test utterances.

when i = k and negative when i ̸= k. Cross-entropy loss is se-
lected to calculate the loss between Softmax of similarity matrix
and target labels. The final domain mismatch loss is defined as

LDM = − 1

M ×N

N∑
i=1

M∑
j=1

log
esi,j,i∑N

k=1 e
si,j,k

(4)

3.2. Multi-Reader transfer learning

Figure 1 illustrates the multi-Reader domain adaption learning
process. Besides the domain mismatch loss LDM (E, T ), we
also calculate the additive margin Softmax loss of enrollment
utterances LAMS(E) and of test utterances LAMS(T ) sepa-
rately. Finally, in this work, the combined loss is defined as

L = LDM (E, T ) + αLAMS(E) + βLAMS(T ) (5)

where parameters α and β control the contributions from these
losses.

4. Experiments
4.1. Training strategy

For FFSVC2022 task 1, only Voxceleb 1 and 2 dataset [21, 22],
FFSVC2020 dataset and supplementary set [9, 13] can be used
for training. We use Voxceleb2 corpus to pre-train all our mod-
els with AM-Softmax loss and Voxceleb1 to evaluate the perfor-
mance of pre-trained models. Adam optimizer with the learning
rate decreases from 0.001 to 0.0005 linearly is used.

4.1.1. Fine-tune stage 1

In fine-tune stage 1, all models are fine-tuned by FFSVC2022
supplementary dataset. However, the number of speaker IDs in
FFSVC2022 supplementary dataset is not enough, which may
cause over-fitting problem. In this work, based on the multi-
reader method in [28], we use two data streams. One con-
tains small number of speaker IDs from in-domain FFSVC2022
data D1 and the other is intended to classify a large number of
speaker IDs from out-of-domain voxceleb data D2. The total



Table 3: Performance of our systems on the FFSVC2022 development set and evaluation set.

ID Configurations EER(%) (Dev) minDCF (Dev) EER(%) (Eval) minDCF (Eval)

0 Baseline System - - 7.021 0.681

1 ResNet34-SE + fine-tune1 7.321 0.590 - -

2 System 1 + data augmentation 6.925 0.560 - -

3 System 2 + fine-tune2 6.194 0.505 - -

4 System 3 + score integration 5.922 0.507 6.971 0.630

5 ECAPA-TDNN1024 + fine-tune1 6.200 0.514 - -

6 System 5 + data augmentation 6.083 0.517 - -

7 System 6 + fine-tune2 5.497 0.496 - -

8 System 7 + score integration 5.322 0.483 6.091 0.573

Table 4: Performance of fusion systems on the FFSVC2022
evaluation set.

System EER(%) (Eval) minDCF (Eval)

Baseline System 7.021 0.681

Fusion1 5.556 0.524

Fusion2 4.409 0.511

loss is calculated as

L (D1, D2) = L (D1) + λL (D2) (6)

where λ is the regularization parameters. In this stage, adam
optimizer is set to 0.0001 learning rate with 0.95 decay each
epoch.

4.1.2. Fine-tune stage 2

Then in fine-tune stage 2, according to trial case settings in
FFSVC2022 evaluation plan [13], close-talking and iphone
recorded audios are selected as enrollment dataset and other
audios in FFSVC2022 supplementary data are selected as test
dataset. We utilize proposed multi-reader domain adaption
learning framework described in Section 3 to future tuning all
models.

4.2. Data augmentation

In pre-train stage, music, noise and speech part from MUSAN
dataset [29] are used as additive noise with random SNR set-
ting from 5db to 20db. In addition, we also use SpecAugment
method described in [30] to enhance the system’s robust in both
pre-train and fine-tune stage. At last, to close the real scenarios,
we collect office and home background noise which is mingled
with different kinds of noise such as air conditioner, keyboard
and television noise. We randomly add this noise to the test
utterances in fine-tune stage.

5. Results Analysis
Table 3 and 4 display results of experiments on systems as well
as fusion systems on FFSVC2022 development dataset and fi-
nal evaluation dataset. The primary metric to evaluate system
performance is the Minimum Detection Cost(minDCF) with
Ptar = 0.01 and both Cmiss and Cfa are equal to 1.0. In
addition, Equal Error Rate (EER) is selected as performance
criteria.

As shown in Table 3, firstly, ECAPA-TDNN based systems
perform better than and ResNet-SE based system. As a cost,
parameter size and amount of computation of ECAPA-TDNN
based systems is also larger.

In addition, comparing to the system without any augmen-
tation, it is clearly data augmentation in fine-tune stage can up-
grade system performance. For ResNet-SE and ECAPA-TDNN
systems, data augmentation get about 5% and 2% EER im-
provement. Score integration method describe in Section 2 also
contributes to the system improvement compared with single
cosine similarity scoring method.

Finally, Proposed multi-reader domain adaption learning
framework in fine-tune stage 2 boosts the system performance
a lot. For EER criteria, the system performances are improved
by about 11% and 10% respectively.

Fusion system performance results on evaluation dataset are
shown in Table 4. For Fusion 1, scores of systems ID5 to ID8
are linearly weighted into one fusion score. For Fusion 2, all
scores of systems in Table 3 are linear combined together.

6. Conclusions
This paper describes the ZXIC speaker verification system sub-
mitted to the task 1 of Interspeech 2022 Far-Field Speaker Veri-
fication Challenge (FFSVC 2022). ECAPA-TDNN and ResNet-
SE are used to extract speaker embeddings. In this paper, we put
forward a novel muti-reader domain adaption training frame-
work based on asymmetric metric learning to solve the sys-
tem degradation caused by mismatch between close-talk enroll-
ment and far-field test speech. In FFSVC2022, our best system
achieves minDCF of 0.511 and EER of 4.409% on the evalua-
tion phase.
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