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Abstract

The system of speaker verification system shows outstanding
performance with the assistance of different types of loss func-
tions with angular margin penalty, which can enforce the intra-
class compactness and inter-class discrepancy. However, the
power of classification may degrade largely when encountering
the cross-domain problems, especially in far-field scenes. Thus,
we propose a novel Cross-Domain ArcFace(CD-ArcFace) loss
function. By adopting distinct margin penalty in different do-
main when conducting mix-data fine-tuning, the performance
of various speaker verification system can be further improved.
This experiment is carried on FFSVC2022. The final score level
of our fusion system for the task1 achieves 4.028% and 4.368%
EER on the development set and evaluation set.
Index Terms: Far-Field, Speaker verification, Cross-Domain.

1. Introduction
Automatic speaker verification (ASV) is a bio-metric technol-
ogy that helps to judge whether a pair of utterance belongs
to the same speaker or not. With the development of com-
puting power, deep learning based speaker verification system
presents outstanding results and gradually becomes the main-
stream. Nowadays, impressive performance has been achieved
by constructing deep speaker embedding with large neural net-
work scale like ECAPA-TDNN[1] and ResNet[2]. However,
those system would degrade severely when employed in a
domain-mismatch scenario. Several efforts have been paid to
improve the cross-domain robustness in various field like far-
field(FFSVC2020, VOICEs) and cross-lingual(VoxSRC2021,
SdSV)scenario,etc. Among all of them the far-field problem
is the most noteworthy. The energy decay and reverberation of
audios may mislead the optimization direction and degrade the
speaker verification performance.

To enforce higher similarity for intra-class samples and
diversity for inter-class samples, margin-based softmax meth-
ods would be a better choice when compared with traditional
softmax loss function. As a variant of softmax loss, angular
softmax(A-softmax)[3] maps features into hypersphere space
and shows promising results. More recently, depending on
more discriminative embeddings and stronger geometric in-
terpretability, AM-softmax[4] and AAM-softmax(ArcFace)[5]
generally become preferred on the ASV system. However,
those loss functions merely focus on single-domain scenario.
Thus, this article raise a novel cross-domain ArcFace(CD-
ArcFace).By allocating different margin to different domain
data in mix-data fine-tuning, the domain-gap can be further al-
leviated.
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This paper introduces our proposed our system for FFSVC
task 1, which incorporates the mentioned CD-ArcFace. The rest
of this paper is organized as follows. In section 2, we describe
our novel proposed CD-ArcFace. Section 3 describes our mix-
data training pipeline and the models we used. Experiment set-
tings are presented in section 4, While 5 discusses the results
based on our experiments. Conclusions are provided in Section
6.

2. Cross-Domain ArcFace
2.1. ArcFace(AAM-Softmax)

ArcFace(also named AAM-softmax)[5] is one of the most pop-
ular and fine-grained loss function in speaker verification prob-
lems.It is an extension of traditional softmax loss function
which introduce an L2-normalization step on the embeddings
and an angular margin penalty is added to the penalty when
estimating the log-likelyhood during the training process. Ad-
ditionally, it has a clear geometric interpretation due to the ex-
act correspondence to the geodesic distance on the hypersphere,
which can be of great help to enforce the model increase inter-
speaker distances and ensure intra-speaker compactness. The
ArcFace loss function is given by:
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with n indicates the batch size, θyi represents the angle between
the current speaker embedding xi and the AAM-softmax class
prototype with speaker identity yi. The margin penalty is indi-
cated with m, which can be interpreted as a metric of compact-
ness of classification. A scaling factor s is applied to increase
the range of the output log-likelihoods.

2.2. Cross-Domain ArcFace

Previous research[6] has shown that higher values of m will
result in more compact classes with large inter-class distance,
which allow network to capture more abstract features and im-
prove the ability to classify different identities. However, large
margin initialization brings much difficulties may confuse the
network, which makes it hard to converge. In our transfer learn-
ing process, the target domain data is put into the model together
with source domain data. Thus, speaker embedding from source
domain would be easier for classifier to discriminate when com-
pared with target domain data in the fine-tuning progress. In
other words, large margin fine-tuning still works when it comes
to the source domain data. As for the target domain, a small
initialization of margin would be beneficial.

Here we conduct a toy experiment to prove that the mar-
gin of data from different domain should be differentiated when



carrying on mix-data training. We randomly select 5 speaker
from source domain and 5 speakers from target domain, Each
speaker has approximately 500 samples.The features extracted
from the pre-trained encoder pass through the t-SNE and the di-
mension reduces from 128 to 2. As is shown on Fig.2, data from
the source domain is relatively compact compared to target do-
main, which indicates that different decision boundary can be
applied. Meanwhile, the number of utterance per speaker of
target domain is basically large, so it should start with a smaller
margin to make it easier to converge.
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mi =

{
ms xi ∈ As

mt xi ∈ At

(3)

The proposed Cross-Domain ArcFace is presented above.
Here the A represents mixed training samples which consists of
samples from source domain and target domain. ms and mt are
the hyper-parameters based on the degree of difference between
source domain and target domain. The rest parameters refer to
Equation (1).

Figure 1: The scatter diagram 2D-speaker representations
through T-SNE. Source domain and target domain share half
of the samples respectively.

3. Training Framework
3.1. Transfer learning pipeline

Transfer learning is a common strategy to transfer the knowl-
edge learned from a general scenario to a specific scenario. By
freezing a certain number of parameters or layers of network,
the ability of extracting abstract information of system can be
partially reserved. Transfer learning, can be also interpreted as
domain adaptation. A simple method is by the means of finetun-
ing pre-trained model from source domain data with target do-
main data, the domain gap can be diminished accordingly. The
tactic is proved to be feasible in some previous research[7],[8]
in speaker verification problem.

As is shown in Figure1, the front-end feature extractor is
pre-trained with large-scaled source domain data. In our exper-
iment, there is an imbalance between the number of categories
of source domain data and target domain data, which makes it
easier to overfit on the target domain. Therefore, in the fine-
tuning process, the target domain data is input into model to-
gether with source domain data. Speed perturbation is used to
increase the number of input audios and speakers. Addition-
ally, all parameters are jointly optimized till the convergence

under a small number of epochs and learning rate, which can
be helpful to avoid over-fitting as well. After the speaker em-
bedding is collected, the cross-domain ArcFace assists to make
those from same speaker more compact and make those from
different speaker looser.

3.2. Deep Speaker Embedding Model

In this part, three different speaker verification systems are
introduced, which are consist of ResNet-SimAM[9], ResNet-
SE[10] and the ECAPA-TDNN[1].The acoustic features are 80-
dimensional log Mel-filterbank energies with a frame length of
25ms and hop size of 10ms. The extracted features are mean
normalized before feeding into the deep speaker network.

3.2.1. ResNet-SE

In this experiment, the ResNet34 structure is utilized as the front
pattern extractor, which can transform acoustic features into
frame level features. The width of the residual blocks is 64, 128,
256, 512 basically.The Squeeze and Excitation block is placed
after each residual block, which can capture global channel in-
formation. Then, the global statistic pooling(GSP) concate-
nates the calculated mean and deviation of the output feature
map, which integrates variable-length features into fix-length
features. Finally, the bottleneck linear layer convert the high-
dimension vector to the low-dimension utterance-level vector
we expect.

3.2.2. ResNet-SimAM

Simple attention module(SimAM) has been proved to be effec-
tive in both computer vision field[11] and speaker verification
field. Different from other attention module, the SimAM is de-
signed based on some well-known neuroscience theories, which
is more interpretable. The pooling layer we adopt here is atten-
tive statistics pooling(ASP)[12]. the classifier is the same as the
ResNet-SE System.

3.2.3. ECAPA-TDNN

The ECAPA-TDNN Network achieves great success in the
speaker verification task and provides the start-of-the-art per-
formance. In this experiment, 1024 feature channels are used
to scale up the network. The dimension of the bottleneck in
the SE-Block is set to 128. The front-end feature extractor is
followed by an attentive statistics pooling (ASP) layer that cal-
culates the mean and standard deviations of the final frame-level
features.

4. Experiment Settings
4.1. Data usage

The experiment is conducted with following datasets:

• VoxCeleb 2.

• FFSVC2020 supplementary set & dev set.

• FFSVC2022 development set

VoxCeleb2[13] contains 1,092,009 utterances from 5,994
speakers, which is treated as the source domain data. The
FFSVC2020 supplementary with dev set comprises 1,213,766
utterances from 154 different speakers. The latter dataset is con-
sidered as target domain data for fine-tuning. As for evaluation,
we adopt the FFSVC2022 development set for hyperparameters
tuning.



Figure 2: The brief illustration of the proposed system. The encoder optimized from source domain data shares its parameter to the
encoder below. The back-end classification process of pre-trained model is omitted here.

4.2. Data augmentation

In our experiment, the pre-training and fine-tuning progress
adopt different augmentation strategy. The model pre-trained
from source domain data adopts different types of noises to im-
prove the generalization ability. Specifically, the MUSAN[14]
and RIR Noise are applied as the additive source of noise and
room impulse response functions respectively. We also ampli-
fied or change the speed of audio signals to further improve the
diversification of data.

To reduce the domain gap, only the noise of RIR is intro-
duced in the fine-tuning process. Mean while, speed perturba-
tion has been verified to make a difference on the performance
of SV system[15].Hence, We speed up or down each utterance
by 0.8,0.9,1.1,1.2 times during fine-tuning, and the utterances
with different speeds are considered from new speaker. Finally
the number of utterances increase from 2,305,775(1,092,009
from source domain and 1,213,766 from target domain) to
11,528,875 with the speaker number increase from 6,148(5,994
from source domain and 154 from target domain) to 30,740.

4.3. Model setup

4.3.1. pre-trained settings

VoxCeleb2 is treated as the source domain data. For feature ex-
traction, logarithmical Mel-spectrogram is extracted by apply-
ing 80 Mel filters on the spectrogram computed over Hamming
windows of 20ms shifted by 10ms. After 4-round warm-up
epochs, the learning rate(LR) falls every 15 epochs from ini-
tial 0.1 to 0.0001 until its performance no longer decreases on
the development set. The SGD optimizer is adopted to update
the model parameters and batch size is set to 128.The ArcFace(s
= 32,m = 0.2) is used as the classifier.

4.3.2. fine-tune settings

FFSVC supplement set is used as the target domain data. The
characteristic of input features are same as that of pre-trained
input features.The ms is set 0.3 and the mt is set 0.1. The batch
size is 64 at this phase. In case the model overfits on target

domain, the learning rate is limited to 0.001 at the initial stage
and drops to 0.00001 within 3 epochs.

4.4. Score Normalization and System Fusion

The cosine similarity is the back-end scoring method. After
scoring, results from all trials are subject to score normaliza-
tion. We utilize Adaptive Symmetric Score Normalization (AS-
Norm) in our systems. Specifically, we utilize the AS-Norm1,
which is defined as Eq.4. Specifically, only top-30 of the tar-
get training data is utilized as cohort set to compute mean and
deviation for normalization.
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In the system fusion stage, we adopt manual calibration and
automatic calibration. According to the system performance in
the development data set, we adopt the score level fusion that
assigns weights to different models. Considering that the model
may overfit on the development set with manual calibration, we
use the BOSARIS Toolkit[16] for calibrating.

5. Results and discussion
5.1. Performance on the Original Dataset

Table 1: The performances of different speaker verification sys-
tems on the VoxCeleb1 original test set.

Model
Vox-O

EER[%] minDCF

ResNet34-SE 0.956 0.104

ResNet-SimAM 0.845 0.085

ECAPA-TDNN 1.127 0.121



Table 2: The performances of different speaker verification systems and fusion system on the FFSVC 2022 development and evaluation
set.

ID Model strategy Dev Eval

EER[%] minDCF EER[%] minDCF

BaseLine - - - 7.021 0.681

1 ECAPA-TDNN pre-train 11.675 0.824 - -
+ft-mix 6.643 0.535 - -

+CD-ArcFace 6.394 0.512 6.760 0.600
+As-Norm 6.133 0.497 6.712 0.598

2 ResNet34-SE pre-train 9.978 0.772 - -
+ft-mix 4.947 0.532 - -

+CD-ArcFace 4.700 0.515 5.067 0.511
+As-Norm 4.675 0.488 4.969 0.503

3 ResNet-SimAM pre-train 9.235 0.727 - -
+ft-mix 4.789 0.493 - -

+CD-ArcFace 4.369 0.476 4.643 0.491
+As-Norm 4.354 0.469 4.575 0.486

fusion 2+3 4.042 0.463 4.488 0.466
1+2+3 4.028 0.456 4.368 0.458

5.2. Performance on the FFSVC chanllege

Table 2 shows our different system for FFSVC 2022 task
1.The pre-train strategy indicates that the model optimized from
source domain is evaluated on the target domain directly. The
difference between ft-mix and CD-ArcFace is the former em-
ploys ArcFace as classifier, while the latter uses the cross-
domain ArcFace, which is introduced in Sec2. It should be
noted that the AS-Norm is composed with CD-ArcFace system
to present the best performance.“Fusion” represents the result
of fusing all the listed single systems with score weighted {0.4,
0.4 ,0.2} for “1+2+3” and {0.5, 0.5} for “2+3” respectively.

6. Conclusion
From table 2 our proposed CD-ArcFace is capable of diminish
the domain gap generally when conducting mix-dataset trans-
fer learning. No matter on which model, CD-ArcFace can fur-
ther optimize the system performance more and less. Therefore,
CD-ArcFace can be proved to learn representation with more
robustness when encountering far-field scene.

7. References
[1] B. Desplanques, J. Thienpondt, and K. Demuynck, “ECAPA-

TDNN: Emphasized Channel Attention, Propagation and Aggre-
gation in TDNN Based Speaker Verification,” in Proc. Interspeech
2020, 2020, pp. 3830–3834.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 770–778.

[3] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “Sphereface:
Deep hypersphere embedding for face recognition,” in 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2017, pp. 6738–6746.

[4] F. Wang, J. Cheng, W. Liu, and H. Liu, “Additive margin softmax
for face verification,” IEEE Signal Processing Letters, vol. 25,
no. 7, pp. 926–930, 2018.

[5] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive
angular margin loss for deep face recognition,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recog-
nition, 2019, pp. 4690–4699.

[6] J. Thienpondt, B. Desplanques, and K. Demuynck, “The idlab
voxsrc-20 submission: Large margin fine-tuning and quality-
aware score calibration in dnn based speaker verification,” in

ICASSP 2021 - 2021 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2021, pp. 5814–
5818.

[7] X. Qin, D. Cai, and M. Li, “Far-Field End-to-End Text-Dependent
Speaker Verification Based on Mixed Training Data with Trans-
fer Learning and Enrollment Data Augmentation,” in Proc. Inter-
speech 2019, 2019, pp. 4045–4049.

[8] X. Qin, C. Wang, Y. Ma, M. Liu, S. Zhang, and M. Li, “Our
Learned Lessons from Cross-Lingual Speaker Verification: The
CRMI-DKU System Description for the Short-Duration Speaker
Verification Challenge 2021,” in Proc. Interspeech 2021, 2021,
pp. 2317–2321.

[9] X. Qin, N. Li, C. Weng, D. Su, and M. Li, “Simple attention mod-
ule based speaker verification with iterative noisy label detection,”
in ICASSP 2022-2022 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE, 2022, pp.
6722–6726.

[10] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,”
in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2018, pp. 7132–7141.

[11] L. Yang, R.-Y. Zhang, L. Li, and X. Xie, “Simam: A sim-
ple, parameter-free attention module for convolutional neural
networks,” in International conference on machine learning.
PMLR, 2021, pp. 11 863–11 874.

[12] K. Okabe, T. Koshinaka, and K. Shinoda, “Attentive Statistics
Pooling for Deep Speaker Embedding,” in Proc. Interspeech
2018, 2018, pp. 2252–2256.

[13] J. S. Chung, A. Nagrani, and A. Zisserman, “VoxCeleb2: Deep
Speaker Recognition,” in Proc. Interspeech 2018, 2018, pp. 1086–
1090.

[14] D. Snyder, G. Chen, and D. Povey, “MUSAN: A Music, Speech,
and Noise Corpus,” 2015, arXiv:1510.08484v1.

[15] H. Yamamoto, K. A. Lee, K. Okabe, and T. Koshinaka, “Speaker
augmentation and bandwidth extension for deep speaker embed-
ding.” in Interspeech, 2019, pp. 406–410.
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