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Abstract
FFSVC2022 is the second challenge of far-field speaker verifica-
tion. To further explore the far-field scenario, FFSVC2022 pro-
vides the fully-supervised far-field speaker verification and pro-
poses the semi-supervised far-field speaker verification. In con-
trast to FFSVC2020, FFSVC2022 focus on the single-channel
scenario. In addition, a supplementary set for the FFSVC2020
dataset is released this year. The supplementary set consists of
more recording devices and has the same data distribution as the
FFSVC2022 evaluation set. This paper summarizes the FFSVC
2022, including tasks description, trial designing details, a base-
line system and a summary of challenge results. The challenge
results indicate substantial progress made in the field but also
present that there are still difficulties with the far-field scenario.
Index Terms: speaker verification, far-field, semi-supervised

1. Introduction
The success of FFSVC2020 [1] indicates that more and more
researchers are paying attention to the far-field speaker verifica-
tion task. This year, the challenge is still focusing on the far-field
speaker verification scenario and providing a new far-field
development and evaluation set collected by real speakers
in complex environments with multiple scenarios, e.g., text-
dependent, text-independent, cross-channel enroll-test, multiple
visiting recording etc. In addition, speech data is not always
labeled in the real scenario, especially for far-field data, which
is also hard to accurately labeled with a close-talking model
with good discriminatory. Therefore, a new focus of this year is
cross-language self-supervised/semi-supervised learning, where
the speaker labels of in-domain data (FFSVC2020 dataset, in
Mandarin) are not allowed. We encourage participants to
generate the pseudo-label for the train/dev set without using
the speaker label of the FFSVC2020 dataset (in Mandarin) by
the close-talking model trained by VoxCeleb1&2 (mostly in
English) to fine-tune the model.

In contrast to FFSVC2020 tasks, this challenge focuses on the
single-channel scenario, which means that both the enrollment
and test audio are single-channel data. In addition, considering
the real application scenario, this year’s trial list will be more
challenging than FFSVC2020. The trial pairs will consider more
hard cases, e.g., text-mismatch, cross-domain, cross-channel,
cross-time, etc.

The FFSVC2022 is designed to boost the speaker verification
research with special focus on far-field scenario under noisy
conditions in real scenarios. The objectives of this challenge
are to: 1) benchmark the current speech verification technology
under this challenging condition, 2) promote the development

of new ideas and technologies in speaker verification, 3) provide
a real, hard, and exploring challenge to the community that ex-
hibits the far-field characteristics in real scenes. The new official
challenge website has been published in https://ffsvc.github.io.

2. Tasks Description
This year we focus on the far-field single-channel scenarios.
There are two tasks in this challenge; both tasks are to determine
whether two speech samples are from the same speaker:
• Task 1. Fully supervised far-field speaker verification.
• Task 2. Semi-supervised far-field speaker verification.

Task 1 is the fully supervised far-field speaker verification
task that using fixed large-scale close-talking databases and
FFSVC20 dataset.

Task 2 is the semi-supervised far-field speaker verification
task that participants are allowed to use fixed large-scale
close-talking databases with speaker labels and the FFSVC20
dataset without speaker labels.

2.1. Trial cases

Both tasks adopt the same trial file. The following cases will be
considered in the final trials.
• Gender. For negative pairs, most negative trial audios are

selected from the same gender, and also, a few cross-gender
trial pairs are provided.

• Cross-domain. Close-talking or far-field speech segment is
chosen as test audio, and enrollment data uses the close-talking
speech segment.

• Cross-channel. Telephone recorded audios are chosen as
enrollment data, and tablet/telephone recorded audios are
chosen as test data.

• Cross-time. Since the recording process lasted one month.
Each speaker has three-time visits, and each visit has a 7-15
days time span. Therefore, enrollment and test data are chosen
from different visits data.

• Text-mismatch. The trial consists of the text-dependent and
text-independent trial pairs.
The final trials consist of the combination of the mentioned

above cases. The participants are expected to explore more
novel and robust systems.

2.2. Training data

We define the task 1&2 as fixed training conditions that the par-
ticipants can only use special training set to build a speaker ver-
ification system. The fixed training set consists of the following:
• VoxCeleb 1&2 [2, 3].

https://ffsvc.github.io


• FFSVC2020 dataset (Train and dev set) [1, 4].
• FFSVC2020 supplementary set (released in this challenge).

This dataset is the supplement of FFSVC20 dataset, both
datasets consist of the same speakers.
Since the FFSVC2022 adopts tablet/telephone data as

evaluation data, we release a supplementary set of FFSVC2020,
which also consists of the tablet/telephone data to reduce the
negative effect of the unseen channel.

For task 1, participants can only use the VoxCeleb 1&2
dataset and the train/dev/supplementary sets of the FFSVC2020
dataset with speakers labeled to train the model.

For task 2, in contrast to task1, participants cannot use
the speaker label of the FFSVC2020 dataset. In this task,
we encourage the participants to adopt the self-supervised or
semi-supervised methods to solve the problem of cross-domain
unlabeled data, e.g., identity pseudo-label using the pre-trained
model on the VoxCeleb dataset.

Using any other speech data in training is forbidden, while
participants are allowed to use the non-speech data to do data
augmentation. The self-supervised pre-trained models, such as
Wav2Vec [5] and WavLM [6], cannot be used in this challenge.

2.3. Development set

This year, we publish new development and evaluation sets,
which are selected from the DMASH dataset1. The trial file and
wav files with accurate speaker information will be provided
for participants as the development set. The development data
has the same data distribution as evaluation data. However,
the development set is only allowed to tune hyperparameters
and test model performance. Any circumstances of training
development set are not allowed, e.g., using development set to
train PLDA or speaker system.

2.4. Evaluation set

As mentioned before, the evaluation set is not completely
out-domain data. However, unlike the FFSVC2020 challenge,
we introduce new recording devices, and all trial pairs are
single-channel speech segments. The evaluation set consists of
a large trials file and anonymized audios.

3. Evaluation Protocol
In this challenge, we will use two metric to evaluate the system
performance. The primary metric we adopt is the Minimum
Detection Cost(mDCF). Equal Error Rate (EER) will be
provided to participant as auxiliary metrics.

The mDCF is based on the following detection cost function
which is the same setting as used in the NIST 2010 SRE. It is a
weighted sum of miss and false alarm error probabilities in the
form:

Cdet=Cmiss×Pmiss×Ptar+Cfa×Pfa×(1−Ptar) (1)
We assume a prior target probability, Ptar of 0.01 and equal

costs between misses and false alarms. The model parameters
are 1.0 for both Cmiss and Cfa.

4. Baseline System
4.1. Task1: Fully-supervised Learning

The task1 baseline system adopts a transfer learning training
strategy named FT-mix. The FT-mix training strategy uses the

1https://www.aishelltech.com/DMASH Dataset

Figure 1: Within-Cluster Cosine Similarity versus the number of
cluster K employed in FFSVC supplementary set

large-scale out-of-domain dataset (5994 speakers of VoxCeleb2
development set) to train a pre-train model and fine-tune it
using mixed data of both in-domain data (120 speakers of
FFSVC2020 supplementary set) and out-of-domain data. The
detail implement is describe following,
• Pre-train a deep speaker embedding model using the Vox2Dev

dataset with 5994 speakers;
• Retain all parameters of the model except for the output

speaker classification layer (num = 5994); replace the speaker
classifier with respect to the number of speakers in the mixed
data (num=5994+120);

• Fine-tune and adapt the the new model with the mixed data
until it converges. All parameters, including those from the
pre-trained model and the new speaker classifier, are jointly
optimized.

4.2. Semi-supervised Learning

In this part, we investigate scenarios where the in-domain
far-field data is unlabeled. In this case, the VoxCeleb data is
consider as the out-of-domain labeled data and the FFSVC
dataset is treated as the in-domain unlabeled data. The labeled
data is used to pre-train a model for pseudo-labeling. For semi-
supervised learning (SSL) operation in the transfer learning
phase, the speaker embedding from unlabeled data is extracted
using the pre-train model and the followed clustering algorithms
to generate pseudo-labels for the unlabeled data. The following
describes the algorithm generating pseudo-labels:

• Step 1. Extract all speaker embeddings Z ∈ RN×d from the
FFSVC20 dataset using the pre-trained speaker model.

• Step 2. Run a clustering algorithm with the different number
of clusters K to obtain centroid matrix C∈Rd for each K.

• Step 3. Calculate the within-class cosine similarity (WCCS)
and observe the ‘elbow’ of the WCCS curve to determine the
number of clusters K .

• Step 4. Create the pseudo labels for the FFSVC20 dataset.
• Step 5. Use the pseudo-labels data together with the labeled

data into the speaker embedding model to fine-tune the model.
• Step 6. Repeat Step 1 with the fine-tuned model from Step 5

as the pre-trained model.

Generating pseudo label by clustering. We adopt the
K-means algorithm as the clustering algorithm to generate the
pseudo labels. The learning objective of K-means is set to
minimize the within-cluster sum-of-squares criterion:

min
C

1

N

N!

i=1

min
k

‖zi−Ck‖2 (2)

where zi∈Rd is the d-dimensional speaker embedding of the ith

sample. The cluster with the closest controid to zi in terms of the
L2-norm distance is assigned as the pseudo-label for sample i.

Determine the number of clusters. Inspired by the works
of Cai et al.[11, 12], we determine the number of clusters by the



Table 1: Final ranks for FFSVC2022 both tasks.

Track Rank Team name Organisation EER mDCF

1

- Baseline FFSVC Organizer 7.021 0.681
4 ZXIC [7] ZTE Corporation 4.409 0.511
3 Nan7U [8] - 4.930 0.482
2 HiMia [9] Northwestern Polytechnical University, Huawei Cloud 3.470 0.319
1 SPEAKIN [10] SpeakIn Technologies Co. Ltd. 3.005 0.294

2
- Baseline FFSVC Organizer 7.644 0.739
2 HiMia [9] Northwestern Polytechnical University, Huawei Cloud 5.342 0.545
1 SPEAKIN [10] SpeakIn Technologies Co. Ltd. 6.692 0.537

‘elbow’ method. Given zk,a, the assigned ath embedding of the
kth cluster. The total WCCS of N elements is:

WCCS=

"K
k=1

"A
a=1cos(zk,a,Ck)

N
, (3)

Since the cosine similarity and euclidean similarity are
connected linearly for normalized vectors, the WCCS linearly
connects with learning objective of K-means. Fig. 1 shows
the curve of WCCS results under different Ks. The WCCS
monotonically increases as number of clusters K increases.
WCCS tends to flatten with some K onwards and forming an
‘elbow’ of the curve. Such ‘elbow’ indicates that the intra-cluster
has little variation and increasingly over-fitting. From Fig. 1,
the ‘elbow’ is distributed between 100 and 120. The specific
implementation of baseline system has been released2.

4.3. Experimental setup

The acoustic features are 80-dimensional log Mel-filterbank
energies with a frame length of 25ms and hop size of 10ms. The
extracted features are mean-normalized before feeding into the
deep speaker network. The network structure contains three
main components: a front-end pattern extractor, an encoder
layer, and a back-end classifier. The ResNet34 [13] model,
and different residual blocks [32, 64, 128, 256], is employed
as the front-end pattern extractor, the 256-dimensional fully
connected layer following the global statistic pooling (GSP)
based encoder layer is adopted as the speaker embedding layer.

2https://github.com/FFSVC/FFSVC2022 Baseline System

The ArcFace[14] (s = 32, m = 0.2) is used as the classifier.
SGD optimizer is adopted to update model parameters, and

we adopt the MultiStepLR as the learning rate (LR) decays
strategy that decays the learning rate of each parameter group by
0.1 once the number of epoch reaches one of the milestones. The
milestone epochs are 10, 20, and 30. In the pre-train stage, LR
decreases from the initialized 0.1 to 0.0001 until its performance
no longer decreases on the development set. In the fine-tuning
stage, the LR is set to a fixed constant of 0.001. We adopt the
MUSAN dataset[15] and RIR NOISE[16] dataset to do data
augmentation.

5. Challenge results
5.1. Final Rank

We received four system descriptions to elaborate and verify the
correctness of their system, so the final rankings are shown in
Table 1. Teams, which do not submit system descriptions, are not
considered in the final rankings. All system description has been
published3. The best performing SPEAKIN team for both tasks
gives an mDCF of 0.294 and 0.537, followed by the HiMia team
which gives an mDCF of 0.319 and 0.545 for two tasks. The other
teams also exceeded the baseline system by more than 30%. For
Task1, all participants adopt the transfer learning method that
uses VoxCeleb data in the pre-train stage and fine-tune with chal-
lenge data or a mix of challenge data and VoxCeleb data. Further,

3https://ffsvc.github.io/publication

Table 2: Challenge results of text-mismatch and cross-time evaluation scenarios. TD and TI indicate that Text-dependent and
Text-independent case. The Visit Gap 0/1/2 indicates that the visit time gap of enroll and test data is 0/1/2.

Track User TD TI Visit Gap 0 Visit Gap 1 Visit Gap 2 Final

EER mDCF EER mDCF EER mDCF EER mDCF EER mDCF EER mDCF

Task 1

Baseline 4.427 0.464 7.11 0.69 6.066 0.608 7.630 0.734 7.938 0.749 7.021 0.681
A08 3.756 0.380 6.745 0.634 5.776 0.559 7.237 0.677 7.593 0.695 6.674 0.627
A07 3.968 0.393 6.940 0.637 4.317 0.454 8.464 0.780 7.935 0.713 6.846 0.626
A06 3.529 0.360 6.062 0.603 5.055 0.528 6.517 0.644 7.039 0.662 5.993 0.595
A05 2.688 0.309 4.363 0.502 3.426 0.398 4.979 0.591 5.178 0.611 4.409 0.511
A04 2.250 0.193 4.961 0.489 4.027 0.411 5.446 0.534 5.974 0.554 4.930 0.482
A03 1.904 0.236 3.482 0.396 2.810 0.332 3.860 0.457 4.390 0.477 3.510 0.404
A02 1.832 0.169 3.510 0.321 2.765 0.265 3.776 0.347 4.445 0.401 3.470 0.319
A01 1.455 0.158 3.036 0.297 2.359 0.237 3.336 0.334 3.787 0.356 3.005 0.294

Task 2
Baseline 5.124 0.562 7.704 0.743 6.682 0.670 8.299 0.792 8.480 0.800 7.644 0.739

B02 3.081 0.334 5.405 0.552 4.478 0.469 5.794 0.600 6.387 0.623 5.342 0.545
B01 3.746 0.340 6.66 0.527 5.701 0.475 7.278 0.583 7.815 0.601 6.692 0.537



SPEAKIN team [10] additional adopts the Large-Margin Fine-
Tuning to improve model performance and Sub-Mean method
to reduce the domain mismatch. HiMia team [9] adopt the two-
stage transfer learning to maintain strong speaker discrimination
ability of the pre-trained model in the in-domain data. In addi-
tion, they novelly adopt the model soup strategy to average the
weights of multiple models in the score fusion stage. Nan7u team
[8] adopts the ResNet and its variant, bidirectional multi-scale
feature aggregation module and global-local information-based
dynamic convolution neural, to build far-field speaker verifica-
tion model. ZXIC team [7] introduces a novel multi-reader do-
main adaption learning method to alleviate this mismatch impact.

5.2. Analysis

In this subsection, we will further analyze the task difficulty
by the final submitted results. In task 1, eight teams exceeded
the baseline system, and two teams had results that over form
the task2 baseline system. Based on the difficulty of our trial
design, we list three difficult scenarios in Table 2 and Table
3, the text-mismatch scenario, the cross-time scenario and
cross-distance scenario.

First, all trials are considered text-dependent (TD) and
text-independent (TI) cases for the text-mismatch scenario.
Although we do not directly distinguish the TD and TI tasks in
this challenge, the TD results of all participants outperform than
TI case by comparing TD and TI results in Table 2. That also
indicates that reducing text influence is important to improve
system performance.

Second, the real speaker verification is time-varying. Usually,
enroll and test audio are not recorded at the same time. In the
cross-time scenario, all positive trials are split into three parts,
visit gap zero/one/two times. For example, the visit gap 0 time
indicates that the enrollment and test audio are recorded at the
same visit, and the visit gap 1 time indicates that the recorded
time has 1 visit time gap (7-15days). From the column of the
terms of Visit GAP 0/1/2 in Table 2, it’s easily observed that
with the visit gap increases, the system performance degrades.
So how to alleviate the time-varying question is a new challenge,
and we further focus on this question in the next challenge.

Finally, we focus on the cross-distance scenario. Table 3 and
Fig 2 reports the results under different distance case. Since the
speaker is directed sound sources, the results of -1.5M is the

Figure 2: Challenge results of cross-distance evaluation sce-
narios. ‘−’ and ‘−−’ indicate the task1 and task2 results,
respectively.

worst. Then, the result of 1M is best, and system performance
degrades with increasing distance. In addition, since the 3M
recorded device is closer to the noise source, performances of
3M are even worse than 5M.

6. Conclusion
This paper introduces the challenge task, evaluation protocol
and baseline system. And we also further analyze the chal-
lenge results and participant method. This year, we focus
on the single-channel far-field speaker verification, and two
tasks are proposed: fully supervised speaker verification and
semi-supervised speaker verification challenge.

From the statistical analysis, far-field speaker verification
is still a challenge and novel question. We designed a multi-
scenario trial file consisting of text-mismatch, cross-time and
cross distance for researchers. Researchers could reduce the
impact of irrelevant speaker information and explore the domain
adaptation strategy in this challenge.
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