
The SpeakIn Speaker Verification System for Far-Field Speaker Verification
Challenge 2022

Yu Zheng*, Jinghan Peng*, Yihao Chen*, Yajun Zhang, Jialong Wang, Min Liu, Minqiang Xu†

SpeakIn Technologies Co. Ltd.
{zhengyu, liumin, xuminqiang}@speakin.ai

Abstract
This paper describes speaker verification (SV) systems submit-
ted by the SpeakIn team to the Task 1 and Task 2 of the Far-
Field Speaker Verification Challenge 2022 (FFSVC2022)[1].
SV tasks of the challenge focus on the problem of fully super-
vised far-field speaker verification (Task 1) and semi-supervised
far-field speaker verification (Task 2). In Task 1, we used the
VoxCeleb and FFSVC2020 datasets as train datasets. And for
Task 2, we only used the VoxCeleb dataset as train set. The
ResNet-based and RepVGG-based architectures were devel-
oped for this challenge. Global statistic pooling structure and
MQMHA pooling structure were used to aggregate the frame-
level features across time to obtain utterance-level representa-
tion. We adopted AM-Softmax and AAM-Softmax to classify
the resulting embeddings. We innovatively propose a staged
transfer learning method. In the pre-training stage we reserve
the speaker weights, and there are no positive samples to train
them in this stage. Then we fine-tune these weights with both
positive and negative samples in the second stage. Compared
with the traditional transfer learning strategy, this strategy can
better improve the model performance. Sub-Mean and AS-
Norm backend methods were used to solve the problem of do-
main mismatch. In the fusion stage, three models were fused in
Task1 and two models were fused in Task2. On the FFSVC2022
leaderboard, the EER of our submission is 3.0049% and the cor-
responding minDCF is 0.2938 in Task1. In Task2, EER and
minDCF are 6.2060% and 0.5232 respectively.
Index Terms: speaker verification, FFSVC, domain adaptation,
staged-training

1. Introduction
In the past several years, with the rapid development of the deep
artificial neural network, near-field speaker verification (SV)
performance has significantly improved[2, 3]. However, for the
far-field speaker verification task, the quality of the speech sig-
nals is affected by energy decaying, reverberation, and envi-
ronmental noise. All these factors make the far-field speaker
verification problem more challenging. With intelligent speech
assistants being used in smartphones and smart-home devices,
more and more attention has been paid to the performance of
far-field speaker recognition. The Far-Field Speaker Verifica-
tion Challenge 2020 [4] (FFSVC2020), which focused on both
far-field text-dependent and text-independent speaker verifica-
tion problems under noisy conditions in real scenarios, was
launched to derive the development of far-field speaker recog-
nition. FFSVC2020 successfully encouraged more researchers
to pay attention to the far-field SV task. The Far-Field Speaker
Verification Challenge 2022 (FFSVC2022), heading in the same

*These authors share equal contribution to this work.
†Corresponding author.

direction, still focuses on far-field speaker verification. The
FFSVC2022 has two tasks, namely Task 1 and Task2. Task
1 is a fully supervised far-field speaker verification task that can
only use the VoxCeleb dataset and FFSVC2020 dataset. Task
2 focuses on cross-language self-supervised/semi-supervised
learning, which is a novelty of this challenge. In contrast to
Task 1, the speaker label of the FFSVC2020 dataset cannot be
used in Task 2. In addition to providing a supplementary set
of the FFSVC2020 dataset, FFSVC2022 also provided a new
far-field development and evaluation set collected in complex
environments with multiple scenarios.

The main difficulty of this challenge lies in cross-language
and cross-domain. In response to this, we propose a new staged
transfer training strategy that can greatly improve the perfor-
mance of the systems on FFSVC2022 Task 1. We only use the
close-talking English-based VoxCeleb data in the pre-training
stage and preserve the speaker weights that need to be learned
in the fine-tuning stage. In the fine-tuning stage, we add the far-
field Mandarin-based FFSVC2020 data. The traditional transfer
learning method does not reserve additional speaker weights in
the pre-training stage, and randomly initializes these speaker
weights in the fine-tuning stage.

All of our systems are deep-learning-based. Two different
networks are used as encoders, namely ResNet and RepVGG.
Based on the two-dimensional (2D) convolution layer, the net-
works get state-of-the-art performance for near-field speaker
recognition in the reverberant and noisy environment. In
this challenge, ResNet-based and RepVGG-based networks are
used as encoders to generate frame-level representation. Each
encoder is followed by a pooling layer to aggregate the frame-
level features across time to obtain utterance-level represen-
tation. Global statistic pooling structure [2] and multi-query
multi-head attention (MQMHA) pooling structure [5] are used
in our work. We use AM-Softmax and AAM-Softmax loss
functions to increase the distance of inter-speakers and decrease
the distance of the intra-speakers. Inter-TopK [6] is introduced
to further increase the discrimination between speakers. Be-
sides, we introduce the Sub-Center method [7] to reduce the
influence of possible noisy samples. We use cosine similarity
for scoring in both tasks. Adaptive score normalization (AS-
Norm) [8] is used to increase the robustness against different
channels and domains. For Task 2, we found that the Sub-Mean
backend method drastically reduces the EER and minDCF. Fi-
nally, the scores from different single systems are weighted av-
erage fused. Our proposed system significantly outperforms the
official baseline with 56.83% and 27.33% relative minDCF re-
ductions on the Eval set of Task 1 and Task 2 respectively.

The paper is structured as follows: Section 2 describes the
datasets used to train and test, feature extraction procedure, and
augmentation methods. Section 3 introduces our network struc-
ture, including backbone, pooling structure, and loss function.
Section 4 details the training methods of our systems. Section

5 focuses on the backend methods and fusion method. Experi-
mental results are presented and analyzed in Section 6. Section
7 concludes this paper.

2. Datasets
2.1. Training dataset

For Task 1, VoxCeleb and FFSVC2020 datasets(train, dev, and
supplementary set) were used to perform system development.
VoxCeleb dataset contains 5994 speakers and the FFSVC2020
dataset has 155 speakers. We here adopted a 3-fold speed aug-
mentation at first to generate extra twice speakers. Each speech
segment in this dataset was perturbed by 0.9 and 1.1 factors
based on the SoX speed function. Then we obtained total 18447
speakers, which is triple amount of the original speakers.

For Task 2, only VoxCeleb data with speed perturbation was
used to perform system development. There are 17982 speak-
ers in this dataset. FFSVC2020 dataset without speaker label
information was used in the backend stage.

We applied the following techniques to augment each utter-
ance:

• Reverberation: artificially reverberation using a convo-
lution with simulated RIRs[9] from the AIR dataset

• Music: taking a music file (without vocals) randomly se-
lected from MUSAN[10], trimmed or repeated as neces-
sary to match duration, and added to the original signal
(5-15dB SNR).

• Noise: MUSAN noises were added at one-second inter-
vals throughout the recording (0-15dB SNR).

• Babble: MUSAN speech was added to the original signal
(13-20dB SNR).

We extracted 81-dimensional log Mel filter bank with en-
ergy based on Kaldi. The window size is 25 ms, and the frame
shift is 10 ms. 200 frames of each feature were extracted with-
out extra Voice Activation Detection (VAD). All features were
cepstral mean normalized (CMN) in our training modes.

2.2. Development & Evaluation dataset

The development (Dev) data has the same data distribution as
evaluation (Eval) data. All trial pairs of the development set and
the evaluation set are single-channel speech segments. All en-
rollment utterances are close-talking speech segments recorded
by telephone, while the test segments are close-talking or far-
field audio recorded by tablet or telephone[1].

3. Systems
3.1. ResNet

As one of the most classical ConvNets, ResNet[11] has proved
its power in speaker verification. In our systems, bottleneck-
block-based ResNet (deeper structures:ResNet-74, ResNet-101,
ResNet-152) are adopted. Base channels of all these ResNets
are 64. We also implemented a deep and thin ResNet-221 struc-
ture which used ResNet v2[12] BottleNeck with 32 base chan-
nels.

3.1.1. ResNet-D

ResNet-D[13] is a modification of the ResNet architecture that
utilizes an average pooling tweak for downsampling. The mo-
tivation is that in the unmodified ResNet, the 1 × 1 convolution

for the downsampling block ignores 3/4 of input feature maps.
Such modification will not lead to the omission of information.

3.1.2. fwSE

A frequency-wise Squeeze-Excitation(fwSE) block[14], which
injects global frequency information across all feature maps, is
used in our system.

3.2. RepVGG

In our previous work, we have proved that the RepVGG, as
one of the re-parameterized models, shows competitive perfor-
mance in speaker recognition[5, 15]. We select RepVGG-A1,
RepVGG-A2, and RepVGG-B1 as our backbones in this chal-
lenge. All RepVGG models adopt 64 base channels.

3.3. Pooling Method

The pooling layer aims to aggregate the variable sequence to an
utterance level embedding. In addition to the global statistics
pooling layer (GSP), we also used the multi-query multi-head
attention pooling mechanism layer (MQMHA). RepVGG-A1
and RepVGG-A2 are followed by GSP, and other backbones
are followed by MQMHA.

3.4. Loss Function

Recently, margin-based softmax methods have been widely
used in speaker recognition works. To make a much better per-
formance, we strengthen the AM-Softmax[16, 17] and AAM-
Softmax[18] loss functions by two methods.

First, the Sub-Center method [7] was introduced to reduce
the influence of possible noisy samples. The formulation is
given by:

cos(θi,j) = max
1≤k≤K

(||xi|| · ||Wj,k||) (1)

where the max function means that the nearest center is
selected and it inhibits possible noisy samples interfering the
dominant class center. K means the number of sub-centers for
each speaker class, and k is the index of the sub-center.

Second, we proposed the Inter-TopK [6] penalty to pay fur-
ther attention to the centers which obtain high similarities com-
paring samples that do not belong to them. Therefore, it adds an
extra penalty to these easily misclassified centers. Given a batch
with N samples and C classes, the formulation with adding an
extra Inter-TopK penalty based on the AM-Softmax is:

LAM′ =− 1

N

N∑
i=1

log
es·(cosθi,yi−m)

es·(cosθi,yi−m) +
C∑

j=1,j ̸=yi

es·ϕ(θi,j)
(2)

where m is the original margin of AM-Softmax and s is the
scalar of magnitude. We use the ϕ(θi,j) to replace the cosθi,j
in the denominator:

ϕ(θi,j) =

cosθi,j +m′ j ∈ arg topK
1≤n≤C

(cosθi,n)

cosθi,j Others.
(3)

where m′ is an extra penalty that focuses on the closest
K centers to the example xi. And it is just the original AM-
Softmax case when m′ = 0. Similarity, the Inter-TopK penalty
could be also added for AAM-Softmax loss function by replac-
ing cosθi,j +m′ by cos(θi,j −m′).

4. Training Protocol
We used Pytorch[19] to conduct our experiments. For Task 1,
some of our models were trained through two stages, and the
others were trained through an additional stage. And on Task 2,
all of our systems were trained through the first stage.

4.1. Stage 1: Pre-Training

In the first stage, we used all VoxCeleb data with speed pertur-
bation, consisting of 17982 speakers. It should be noted that
we do not use any FFSVC2020 data at this stage. The number
of classes is set to 17982 or 18447, depending on whether the
weights of speakers from the FFSVC2020 dataset are reserved.
The SGD optimizer with a momentum of 0.9 and weight decay
of 1e-3 was used. We used 8 GPUs with 128 mini-batch and
an initial learning rate of 0.08 to train all of our models. 200
frames of each sample in one batch were adopted. We adopted
the ReduceLROnPlateau scheduler with a frequency of validat-
ing every 2,000 iterations, and the patience is 2. The minimum
learning rate is 1.0e-6, and the decay factor is 0.1. All the mod-
els were trained with AM-Softmax in the first stage. Further-
more, the margin gradually increases from 0 to 0.2 [20].

We propose a novel training method, which preserves the
speaker weights in the pre-training stage that need to be learned
for the fine-tuning stage, even though there are no positive sam-
ples to train these preserved weights in the pre-training phase.
For example, the number of speakers in VoxCeleb dataset with
speed perturbation is 17982, and we set the number of classes
in loss function to 18447. In the pre-training stage, there are
no positive samples but only negative samples to train these
preserved weights of 465 classes. The preserved 465 classes
correspond to 465 speakers in the FFSVC2020 dataset with
speed perturbation, respectively. When the number of classes
is set to 17982, the weights of speakers of the FFSVC2020
dataset will be generated by random initialization in the second-
stage training. However, preserving the speaker weights of the
FFSVC2020 dataset in stage 1, we could use the trained weights
to initialize in the fine-tuning stage. The experimental results
confirm that this training method greatly improves the perfor-
mance of the model, compared with the method of randomly
initializing the weights of the last layer in traditional transfer
learning. For specific experimental results, we can refer to the
results of whether fwSE-ResNet34-D reserves weights in Table
1.

4.2. Stage 2: Fine-Tuning

We used VoxCeleb dataset without speed perturbation and the
FFSVC2020 dataset with speed perturbation to fine-tune all sys-
tems in the second stage. The training dataset consists of 6459
speakers. All the configurations and hyper-parameters were the
same as in the first stage except the initial learning rate, which
was 2e-5. We removed the speed augmented part from the Vox-
Celeb dataset, and discarded the corresponding weights at the
same time. For this reason, the number of classes is changed to
6459.

4.3. Stage 3: Large-Margin Fine-Tuning

Large-Margin Fine-Tuning (LM-FT)[21] helps to further im-
prove model performance for some of our models. We chose
the second-stage model to fine-tune for an additional epoch. In
the LM-FT stage, settings are slightly different from the sec-
ond stage. Firstly, we only used the FFSVC2020 dataset set as
the training data, removing the speed augmented part from the

training set to avoid domain mismatch. Secondly, we changed
the chunk size from 200 to 400 and increased the margin ex-
ponentially from 0.2 to 0.5. The AM-Softmax loss was re-
placed by AAM-Softmax loss. We found that the large-margin-
based fine-tuning in the third stage is not stable. For some large
models, extra large-margin-based fine-tuning after the second
stage may make the model performance worse. As a result,
we only do the third stage fine-tuning on some models, such as
RepVGG-A1 and RepVGG-A2.

5. Backend
We used cosine distance for scoring in both Task 1 and Task
2. In addition, adaptive symmetric score normalization (AS-
norm)[8] was used for Task 1, and Sub-Mean was used for Task
2.

5.1. AS-Norm

For Task 1, AS-Norm was used for all of the models. For
AS-Norm, we selected the original VoxCeleb and FFSVC2020
dataset without any augmentation. The cohort was created by
using the speaker’s random one utterance embedding vector as a
speaker center and consisted of 6149 speaker centers. Only part
of the cohorts are selected to compute mean and standard devi-
ation for normalization, and top-300 highest scores are selected
for Task 1.

5.2. Sub-Mean

Sub-Mean was used for models trained for Task 2. We ran-
domly chose 40000 utterances from the FFSVC2022 dataset,
then extracted the embedding vectors to compute the global
mean embedding vector. The enrollment and test embedding
vectors both subtract the mean embedding vector before scor-
ing:

s(xe,xt) = cos(xe − x̄,xt − x̄) (4)

where xe, xt are enrollment and test speaker embed-
ding vectors respectively, and x̄ is the mean embedding vec-
tor of 40000 utterances randomly chosen from the FFSVC2022
dataset.

5.3. Fusion

The results of all systems were fused using Logistic Regression
on FFSVC2022 Dev set. We got the weight of each system
and then selected the dominant systems to assign weights ar-
tificially. In the end, fusion was performed by computing the
weighted average of the scores of selected individual systems.

6. Results
Results of experiments on all our systems developed for the
Task 1 and Task 2 are displayed in Table 1 and Table2 re-
spectively. The performance is measured on the FFSVC2022
development and evaluation set in terms of Equal Error Rate
(EER) and Minimum Detection Cost(minDCF) with a prior tar-
get probability, Ptar of 0.01. All systems in Table 1 are the
results of models trained in stage 2 or stage 3 for Task 1, while
all systems in Table 2 are the results of models trained in stage
1 only using the VoxCeleb dataset for Task 2.

All systems in Table 1 are the results of the cosine score
after AS-Norm calibration for Task 1. Among all the single
systems, ResNet152 gets the best performance by both EER and
minDCF, which has a 6.6924% EER and 0.5374 minDCF after

Table 1: Performance on FFSVC2022 Dev&Eval set in Task 1. All systems used the AS-Norm backend method. Reserved Weight is T
means that the corresponding model reserved the speaker weights of the FFSVC2020 dataset in the first stage, and F means that the
corresponding model does not. S7 and S9 systems were trained in the third stage, the others were only trained in the second stage.

System Index System Reserved Weight Dev Eval
EER(%) minDCF EER(%) minDCF

S1 fwSE-ResNet34-D T 3.4278 0.3830 - -
S2 fwSE-ResNet34-D F 5.8806 0.5379 - -
S3 ResNet74 T 3.3361 0.3621 - -
S4 fwSE-ResNet101-D T 3.0694 0.3319 - -
S5 ResNet152 T 2.6667 0.2939 3.1897 0.3108
S6 ResNet221 v2(thin) T 2.9861 0.3237 3.3333 0.3307
S7 RepVGG-A1 T 3.8417 0.3910 4.1109 0.3933
S8 RepVGG-A2 T 3.4472 0.3554 3.7269 0.3699
S9 RepVGG-A2 T 3.5389 0.3536 3.7178 0.3651
S10 RepVGG-B1 T 3.2861 0.3247 - -

Fusion
S5,S6,S9 2.5000 0.2735 3.0049 0.2938

Table 2: Performance on FFSVC2022 Dev&Eval set in Task 2. All models were trained only using the VoxCeleb dataset in stage 1.
S2-S8 systems used the Sub-Mean backend method while the S1 system did not.

System Index System Sub-Mean Dev Eval
EER(%) minDCF EER(%) minDCF

S1 fwSE-ResNet34-D F 8.6861 0.6901 - -
S2 fwSE-ResNet34-D T 7.2444 0.5650 - -
S3 fwSE-ResNet101-D T 7.1472 0.5617 - -
S4 ResNet152 T 6.4639 0.5132 6.6924 0.5374
S5 ResNet221 v2(thin) T 6.4417 0.5399 - -
S6 RepVGG-A1 T 7.4306 0.5929 - -
S7 RepVGG-A2 T 6.9583 0.5600 - -
S8 RepVGG-B1 T 7.0861 0.5556 - -

Fusion
S4,S5 5.9833 0.5004 6.2060 0.5232

AS-Norm. The final fusion result used three single systems and
get a 3.0049% EER and 0.2938 minDCF. The S1 system that
reserves the speaker classification weights of the FFSVC2020
dataset in the first training stage gets a much lower minDCF
value than the S2 system that does not. According to the results
of the S1 system and S2 system, the reserving weight training
strategy results in a relative minDCF reduction of 28.8%. The
other systems (S3-S10) all reserve weights in the first stage. The
S8 system was trained in the second stage, and the S9 system
was trained in the third stage. Comparing the S8 system and
S9 system, we conclude that an additional Large-Margin Fine-
Tuning can lower the minDCF slightly. However, we found
that for large models (such as ResNet152 and RepVGG-B1) an
extra LM-FT probably degraded model performance. Therefore
we did not perform LM-FT on all individual systems.

For Task 2, all the models were trained in stage 1. S2-
S8 systems used the Sub-Mean method described in Section
5.2 while the S1 system did not. Comparing the S1 system
and S2 system, the Sub-Mean method brings 18.13% relative
minDCF reductions. Same as Task 1, the best individual system
is ResNet152, which has a 6.6924% EER and 0.5374 minDCF.
The EER and minDCF of the fused result are 6.2060% and
0.5232 respectively. In our experiments, we found that AS-
Norm calibration after Sub-Mean does not further reduce the
minDCF value. As a result, we only use the Sub-Mean backend
method for Task 2.

7. Conclusions
We experimented with multiple models on the SV, and ResNet
achieved the best results on both tasks. Data augmentation,

hyper-parameter changes in the fine-tuning stage, and score nor-
malization in the backend have all brought improvement. Ex-
perimental results show that the larger model outperforms the
small model on both tasks of the FFSVC2022.

Training in stages with using different train dataset and
strategies in different stages can greatly improve model perfor-
mance. The model trained using only VoxCeleb data will per-
form slightly worse than the model trained using VoxCeleb and
FFSVC2020 data in the first stage. But the former will perform
far better than the latter after fine-tuning in the second stage.

From the experimental results, we conclude that reserving
the weights of the speakers from the FFSVC2020 dataset with
only using the VoxCeleb dataset to train in the first stage makes
the model perform much better after fine-tuning in the second
stage. We speculated that the randomly initialized weights of
speakers of the FFSVC2020 dataset are hard to converge pos-
sibly due to the small learning rate in the second stage. We
found that an additional large-margin-based fine-tuning after
the second-stage fine-tuning can further improve the model per-
formance, such as RepVGG-A1 and RepVGG-A2. However,
our experimental results show that this method is unstable. For
some large models, such as RepVGG-B1 and ResNet152, the
refinement may make the model performance worse.

For Task 2, the speaker labels of the far-field FFSVC2020
dataset cannot be used in training. We only use the close-talking
VoxCeleb dataset to train our models. Instead, the development
set and evaluation set are far-field audio datasets. Therefore,
there is a domain mismatch between training data and evalua-
tion data. We focused on the solution of domain mismatch and
used the Sub-Mean to solve the problem. Our experimental re-
sults show that Sub-Mean is pretty useful for domain mismatch.

8. References
[1] X. Qin, M. Li, H. Bu, S. Narayanan, and H. Li, “Far-field speaker

verification challenge (ffsvc) 2022 : Challenge evaluation plan,”
2022.

[2] D. Snyder, D. Garcia-Romero, D. Povey, and S. Khudanpur,
“Deep neural network embeddings for text-independent speaker
verification.” in Interspeech, 2017, pp. 999–1003.

[3] E. Variani, X. Lei, E. McDermott, I. L. Moreno, and J. Gonzalez-
Dominguez, “Deep neural networks for small footprint text-
dependent speaker verification,” in 2014 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP),
2014, pp. 4052–4056.

[4] X. Qin, M. Li, H. Bu, W. Rao, R. K. Das, S. Narayanan, and
H. Li, “The INTERSPEECH 2020 Far-Field Speaker Verification
Challenge,” in Proc. Interspeech 2020, 2020, pp. 3456–3460.

[5] M. Zhao, Y. Ma, M. Liu, and M. Xu, “The speakin system
for voxceleb speaker recognition challange 2021,” arXiv preprint
arXiv:2109.01989, 2021.

[6] M. Zhao, Y. Ma, Y. Ding, Y. Zheng, M. Liu, and M. Xu, “Multi-
query multi-head attention pooling and inter-topk penalty for
speaker verification,” CoRR, vol. abs/2110.05042, 2021.

[7] J. Deng, J. Guo, T. Liu, M. Gong, and S. Zafeiriou, “Sub-center ar-
cface: Boosting face recognition by large-scale noisy web faces,”
in European Conference on Computer Vision. Springer, 2020,
pp. 741–757.

[8] S. Cumani, P. Batzu, D. Colibro, C. Vair, P. Laface, and V. Vasi-
lakakis, “Comparison of speaker recognition approaches for real
applications.” 08 2011, pp. 2365–2368.

[9] T. Ko, V. Peddinti, D. Povey, M. L. Seltzer, and S. Khudanpur,
“A study on data augmentation of reverberant speech for robust
speech recognition,” in 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017,
pp. 5220–5224.

[10] D. Snyder, G. Chen, and D. Povey, “Musan: A music, speech, and
noise corpus,” arXiv preprint arXiv:1510.08484, 2015.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 770–778.

[12] S. R. Kaiming He, Xiangyu Zhang and J. Sun, “Identity mappings
in deep residual networks,” CoRR, vol. abs/1603.05027, 2016.

[13] T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li, “Bag
of tricks for image classification with convolutional neural net-
works,” CoRR, vol. abs/1812.01187, 2018.

[14] J. Thienpondt, B. Desplanques, and K. Demuynck, “The idlab
voxceleb speaker recognition challenge 2021 system description,”
2021. [Online]. Available: https://arxiv.org/abs/2109.04070

[15] Y. Ma, M. Zhao, Y. Ding, Y. Zheng, M. Liu, and M. Xu, “Rep
works in speaker verification,” CoRR, vol. abs/2110.09720, 2021.

[16] F. Wang, J. Cheng, W. Liu, and H. Liu, “Additive margin softmax
for face verification,” IEEE Signal Processing Letters, vol. 25,
no. 7, pp. 926–930, 2018.

[17] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and
W. Liu, “Cosface: Large margin cosine loss for deep face recogni-
tion,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018, pp. 5265–5274.

[18] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive an-
gular margin loss for deep face recognition,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2019, pp. 4690–4699.

[19] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch:
An imperative style, high-performance deep learning library,” Ad-
vances in neural information processing systems, vol. 32, pp.
8026–8037, 2019.

[20] Y. Liu, L. He, and J. Liu, “Large margin softmax loss for speaker
verification,” arXiv preprint arXiv:1904.03479, 2019.

[21] J. Thienpondt, B. Desplanques, and K. Demuynck, “The idlab
voxceleb speaker recognition challenge 2020 system description,”
arXiv preprint arXiv:2010.12468, 2020.

