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Abstract

In this report, we present the x-vector based systems for
the Interspeech 2020 Far-Field Speaker Verification Challenge
(FFSVC) Task2: far-field text-independent speaker verification
using a single microphone array. The system consists with three
part: data augmentation, network description and score fusion.
Besides the provided FFSVC2020 training set, more than 10000
speakers external open-source datasets are used to increase the
speaker diversity for a robust systems. Traditional time delay
neural network system (TDNN) and extended-TDNN system
are adapted in this report. Score-normalization and score fusion
are further adopted in the tasks to improve the performance. Fi-
nally, minDCF of 0.5389 and EER 4.88% on development set
are obtained.
Index Terms: speaker verification, x-vector, data augmentation

1. Introduction
Speaker verification is to verify the identity of target speak-
ers. Near-end speaker verification system have achieved large
progress. Due to the complexity and varied acoustic envi-
ronment, far-field speaker verification face more challenges[1].
The TASK2 of the interspeech 2020 far-field speaker verifica-
tion challenge (FFSVC) is focus on the problem of far-field text-
independent speaker verification from single microphone array.
The recording devices include one close-talking microphone,
one iPhone at 25cm distance and 6 circular microphone arrays.
The training data, the development data and the evaluation data
have 120 speakers, 35 speakers, and 80 speakers, respectively.

Due to the few speakers of the training data, the open-
access database shared on openslr.org before Feb 1st can be
used as external datasets adding to the training sets. The chan-
nel mismatch exist in the in-domain FFSVC2020 sets and the
out-domain open-access datasets. In order to reduce such mis-
match, data augmentation are used in this report.

The network used in this task are x-vector based [2], includ-
ing TDNN system and Extend-TDNN system. Finally, score
normalization [3] and score fusion are used to reduce the im-
balance of the different datasets and different the systems.

The report is organized as follows. Technical solution and
experimental result are present in Section 2. Section 3 present
the conclusions of this report.

2. Technical solution
This section describes our data augmentation, network descrip-
tion and experimental results.

2.1. Data augmentation

The training set consists of the FFSVC2020 sets and the open-
access datasets. We devide the training set into two part : near-
filed dataset and the far-field dataset. For the near-field dataset,

Table 1: Extended TDNN Framework

Num Layer name Layer Context Size
1 TDNN-ReLU-BN t-2:t+2 1024
2 Dense-ReLU-BN t 1024
3 TDNN-ReLU-BN t-2,t,t+2 1024
4 Dense-ReLU-BN t 1024
5 TDNN-ReLU-BN t-3,t,t+3 1024
6 Dense-ReLU-BN t 1024
7 TDNN-ReLU-BN t-4,t,t+4 1024
8 Dense-ReLU-BNN t 1024
9 Dense-ReLU-BNN t 1500
10 Pooling Full Seq. 3000
11 Dense-ReLU-BNN [0, T] 512
12 Dense-ReLU-BNN [0, T] 512
13 Softmax [0, T] Num.Spks

Table 2: TDNN Framework

Num Layer name Layer Context Size
1 TDNN-ReLU-BN t-2,t-1,t,t+1,t+2 1024
2 TDNN-ReLU-BN t-2,t,t+2 1024
3 TDNN-ReLU-BN t-3,t,t+3 1024
4 LSTMP t 1024
5 TDNN-ReLU-BN t 1024
6 LSTMP t 1024
7 TDNN-ReLU-BN t 1500
8 Pooling Full Seq. 3000
9 Dense-ReLU-BNN [0, T] 512
10 Dense-ReLU-BNN [0, T] 512
11 Softmax [0, T] Num.Spks

we take two data augmentation policies. The first data augmen-
tation method follow the KALDI recipe, which contains adding
the additive noise and the convolution noise. The second data
augmentation method is using the Pyroomacoustics toolkit [4]
to generate simulated room impluse response (RIR). Then the
near-field signal Convolve with the simulated. For the far-field
dataset, weighted prediction error and beamforming method are
used to reduce the reverberation and the environment noise. The
specAugment proposed in [5] were used to do the frequency and
time mask on the training set.

The preprocessed data will resample to 16000 Hz, and log
Mel filter-banks with 40-dimensions features are adopeted. All
the features are extracted every 10ms with a 25ms window.
Then the cepstral mean-normalization (CMV) with a sliding
window of 3s are performed on these features.

2.2. Network architectures

Table 1 present the detail of the ETDNN system. It consist three
part: the frame-level, the pooling layer, and the segment-level.



Table 3: Evaluation results on the development set

ID System Cosine Cosine(AS-norm)(dev) Cosine(AS-norm)(eval)
minDCF EER minDCF EER minDCF EER

1 Baseline System 0.5800 5.83 - - 0.66 6.55%
2 TDNN 0.5914 5.81% 0.5652 5.26% - -
3 ETDNN 0.5733 5.67% 0.5511 5.17% - -
4 Fusion 2 &3 - - 0.5389 4.88% 0.6087 5.64%

Then a softmax layer followed by the segment-level mapping
the hidden nodes to the number of speakers. The output node
in frame-level is 1024, the mean and Standard deviation with
1500 dimension used mapping the frame-level features to the
segment-level feature.

The TDNN framework are shown in Table 2. We have a
little changes compared to the traditional TDNN-based system.
In the last 4 layer of the frame-level of the TDNN framework,
we use a LSTMP layer followed by a TDNN-ReLU-BN layer
to replace the single TDNN-ReLU-BN layer. The output of the
frame-level is 1024.

2.3. Adaptive score normalization and Fusion

In this report, We adopt the Cosine similarity as the back-end
scoring method. The Adaptive score normalization with cohort
up to 200 files are used in this report to normalize the Cosine
scores. The normalized scores are then equally averaged.

2.4. Experimental result

We evaluate our systems on the development sets provided by
FFSVC2020. The results shown in Table 3 present the scores
with and without the AS-norm process. It is clearly that the
performance improved using the AS-norm post-process. The
final result on the development achieves minDCF of 0.5389 and
EER of 4.88 using the average method.

3. Conclusions
This paper describes the x-vector based system, including
TDNN and ETDNN architecture, on the far-field datasets. Both
the TDNN system and the ETDNN system get performance im-
provement compared to the baseline system.
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