
ZXIC Speaker Verification System for FFSVC 2022 Challenge

Yuan Lei

ZTE Corporation
lei.yuan1@zte.com.cn

Abstract
This paper describes the ZXIC speaker verification system
submitted to the task 1 of Interspeech 2022 Far-Field Speaker
Verification Challenge (FFSVC 2022). We focus on solve the
performance degradation problem caused by mismatch
between enrollment utterances and far-field test utterances.
We introduce a novel multi-reader domain adaption learning
method to alleviate this mismatch impact. In this challenge,
we explore 2 kinds of advanced neural network structures
ECAPA-TDNN and ResNet-SE with different loss functions.
The submitted systems are the fusion of different models.
Finally, the best system achieves a minimum of the detection
cost function (minDCF) of 0.511and an equal error rate (EER)
of 4.409% on the evaluation set of the challenge.

Index Terms: speech verification, fully supervised, deep
learning, domain adaption

1. Introduction
Speaker verification is the process of verifying a person from
characteristic of voices. Recently, due to the development of
deep learning technology and the availability of large-scale
speech datasets, automatic speaker verification (ASV) has
become one of the most promising biometric authentication
methods in smart speakers and smartphones. Pioneering works
on speaker verification based on embedding extracted by deep
neural network can transform speaker utterances into fixed
dimensional embedding vectors for back-end scoring [1, 2].
These works have achieved significantly superior results on
speaker verification benchmark datasets and close-talk
scenarios. However, when ASV systems are deployed in real
word, their performance drop obviously. The performance
degradation is caused by the combination of many factors.
One factor is the mismatch between domains on real scenarios
and domains in which the systems are trained. Another critical
factor is the mismatch between enrollment utterances and test
utterances which are collected on real scenarios. Unexpected
cross-domain problems, such as cross-distances, cross-
channels, cross-devices and cross-time problems will damage
the system’s performance a lot. To promote the development
of speaker verification on real application scenarios, Far-Field
Speaker Verification Challenge (FFSVC) was first organized
in 2020 [3]. In this year, the specific objective for FFSVC
2022 focus on single-channel far-field speaker verification
scenarios under noisy conditions [4].
In this paper, we presented our submitted system to the fully
supervised far-field speaker verification task (task1) of
FFSVC 2022. In this challenge as well as common real
scenarios, enrollment data are usually collected via close-
talking telephones while test utterances are collected in
complex far-field home/office environments. To solve

performance degradation caused by the mismatch. We propose
a novel multi-reader domain adaption learning method for
deep learning based x-vector embeddings. We introduce this
training technique with strong focus on mismatch between
enrollment and test speeches. In addition, we conduct a
number of experiments on deep learning based embedding
extractors. Classification objectives loss functions and metric
learning based loss functions are also explored in this work.
The rest of the paper is organized as follows: Section 2
describes the system components of our system including
front-end, feature extraction, model extractors and back-end
strategies. Section 3 introduces the proposed novel multi-
reader domain adaption learning method. Experimental results
are presented in Section 4, followed by conclusions.

2. System components

2.1. Feature extraction

All raw input signals are resampled to 16kHz, normalized and
pre-emphasized before feature extraction. During training, we
randomly extract a fixed length 2-seconds segment from each
utterance. While during testing, 5 equally-spaced 2-seconds
segments and the entire utterance are selected for feature
extraction. 80 dimensional logarithm Mel filter bank energies
are generated with a hamming window of width 25ms and step
10ms. All features were cepstral mean normalized without
extra voice activity detection (VAD).

2.2. Speaker embedding extractors

In total, we trained two advanced neural network architectures
to extract speaker embedding from acoustic features. One is
variant of x-vector [2] and the other is variant of ResNet [5].
We introduce them in the following.

2.2.1. ResNet-SE

Residual networks [5], which are widely used in image
recognition have recently been used in speaker recognition
system [6]. Squeeze-and-excitation residual network (ResNet-
SE) is a variant of a ResNet that employs squeeze-and-
excitation blocks to enable the network to perform dynamic
channel-wise feature recalibration [7, 8]. In this work, we
implement ResNet-SE with 34 layers to extract speaker
embeddings. As shown in Table 1 which describes the
ResNet34-SE architecture, 256 dimensional speaker
embedding vectors are extracted. The statistics pooling layer
can aggregates all frame-level outputs to integrate information
across time dimension so that subsequent layers operate on the
entire segment. In this work, we use attentive statistics pooling
(ASP) [9] to aggregate frame-level features into utterance-
level features.



Table 1: ResNet34-SE architecture configuration

Layer name Configurations

Conv1 3 × 3 32

Res-SE 1 3 × 3 32
3 × 3 32 × 3

Res-SE 2 3 × 3 64
3 × 3 64 ×4

Res-SE 3 3 × 3 128
3 × 3 128 × 6

Res-SE 4 3 × 3 256
3 × 3 256 × 3

Statistics
pooling ASP

Linear 1 512 × 256

2.2.2. ECAPA-TDNN

ECAPA-TDNN is one of the state-of-the-art speaker
verification models [10]. ECAPA models consists of blocks of
time delay neural blocks (TDNNs) and squeeze-and-excitation
layers unified with blocks of Res2Block layers. The model we
used is based on ECAPA-TDNN architecture with the
following parameters: the number of SE-Res2Net Blocks is set
to 3 with dilation values 2, 3 and 4. The number of channels is
set to 1024. The pooling layer of ECAPATDNN-1024 is
attention statistic pooling (ASP) [9].

2.3. Back-end

According experiment results [11] and previous experience,
PLDA will not enhance the system performance if the model
is trained with margin-based loss functions. So in our work,
we use cosine similarity to calculate back-end score.

2.3.1. Score Integration

For development and evaluation trials, embedding vectors of
the entire enroll and test utterances are extracted and whole
utterance similarity score is computed. We also extract 5
embedding vectors from 5 equally-spaced segments in enroll
and test utterances, compute the score matrix and get the
average as matrix average score. The final score is the mean of
whole utterance similarity score and matrix average score.

3. Multi-Reader domain adaption learning
In this section, we propose a multi-reader domain adaption
transfer learning method to solve mismatch problems between
enrollment and test utterances in far-field speaker verification.
As shown in Figure1, in fine-tuning stage, we generate a batch
that contains N speakers, and one close-talking enrollment
utterance andM far-field test utterances from each speaker.
We feed these utterances into our system described in Section
2. During training, in each batch, the extracted normalized
enrollment speaker embedding vectors are ��� and test speaker
embedding vectors are ���,� where 1 ≤ � ≤ � and 1 ≤ � ≤ �.

Figure 1: Multi-Reader domain adaption learning

3.1. Domain mismatch loss

If the embedding extractor is trained well, the embedding
vectors extracted from enrollment speech and test speech
should have similar distribution in the embedding space. The
similarity matrix between each enrollment utterance
embedding and test utterance embedding is defined as:

  beeetS kjikji  ,cos ,,, (1)

where b is learnable bias, 1 ≤ �, � ≤ �, 1 ≤ � ≤ �. As shown
in Figure 2, for a well trained system, the similarity should be
large in gray area and be small in white areas. We define the
target labels for similarity matrix are positive when � = � and
negative when � ≠ � . Cross-entropy loss is selected to
calculate the loss between softmax of similarity matrix and
target labels. The final domain mismatch loss is defined as:
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3.2. Multi-Reader domain adaption learning

Figure 1 illustrates the Multi-Reader domain adaption learning
process. Besides the domain mismatch loss, we also calculate
the additive margin softmax [12] loss ���� �� of enrollment
utterances and ����(��) of test utterances separately. And in
this work, the combined loss is defined as:

DMAMSAM LSTLSELL   )()(S (3)

where the parameters α and β control the contributions from
the these losses.



Figure 2: Similarity matrix of domain mismatch loss

4. Experiments and Results

4.1. Training strategy

For FFSVC2022 task 1, only Voxceleb 1&2 dataset[13, 14],
FFSVC2020 dataset and supplementary set can be used for
training. We use Voxceleb2 corpus to pre-train all our models
and Voxceleb1 to evaluate the performance of pre-trained
models. Adam optimizer with the learning rate decreases from
0.001 to 0.0005 linearly is used.
In fine-tune stage 1, firstly we combine voxceleb2 dataset and
FFSVC2022 supplementary dataset to fine-tune all models
using Adam optimizer with 0.0001 learning rate with 0.95
decay each epoch.
Then in fine-tune stage 2, we select close-talk iphone dataset
as enrollment dataset and others in FFSVC2022
supplementary data as test dataset. Then we use proposed
multi-reader domain adaption learning method to future tuning
all models.
All training process are processing on 2 NVIDIA Tesla T4
GPUs with Intel Xeon Gold CPU at 2.30 GHz.

4.2. Data augmentation

In pre-train stage, music, noise and speech part from MUSAN
dataset [15] is used as additive noise with random SNR setting
from 5db to 20db.
In addition, we also use SpecAugment method [16] to enhance
the system’s robust in pre-train and fine-tune stage.
At last, to close the real scenarios, we collect office and home
background noise which is mingled with different kinds of
noise such as air conditioner noise, keyboard noise and
television noise. We randomly add this noise to the test
utterances in fine-tune stage.

4.3. Experimental results

In this section, we report the results of the speaker
embedding-based systems as well as the fusion system on the
FFSVC2022 development data and evaluation data. The
primary metric to evaluate system performance is the
Minimum Detection Cost(mDCF). In addition, Equal Error
Rate (EER) is selected as performance criteria.
As shown in Table 2, data augmentation and score integration
method both contribute the system improvement. Multi-reader
domain adaption learning in fine-tune stage 2 aiming to solve
the authentication mismatch problem , boost the system

Table 2: Performance of our systems on the FFSVC2022
development set

ID System EER
(%)

min-
DCF

1 ResNet34-SE + fine-tune1 7.321 0.590
2 System 1 + data augmentation 6.925 0.560
3 System 2 + fine-tune2 6.194 0.505
4 System 3 + score integration 5.922 0.507

5 ECAPA-TDNN1024 + fine-
tune1 6.200 0.514

6 System 5 + data augmentation 6.083 0.517
7 System 6 + fine-tune2 5.497 0.496
8 System 7 + score integration 5.322 0.483

performance a lot. System performance results on evaluation
dataset is shown in Table 3. The scores from the models o1 to
8 are linearly weighted into one fusion score.

Table 3: Performance of our systems on the FFSVC2022
evaluation set

System EER(%) min-DCF
Baseline[4] 7.021 0.681
System 4 6.971 0.630
System 8 6.091 0.573
Fusion 1 5.556 0.524
Fusion 2 4.409 0.511

5. Conclusions
This paper describes the ZXIC speaker verification system
submitted to the task 1 of Interspeech 2022 Far-Field Speaker
Verification Challenge (FFSVC 2022). ECAPA-TDNN and
ResNet-SE are used to extract speaker embeddings. In this
paper, we put forward a novel muti-reader domain adaption
training method to solve the problem of mismatch between
close-talk enrollment and far-field test speech. According to
the experiment result, this method improve the systems
performance a lot.
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